提交 a424ab49 编写于 作者: M minqiyang

Change CMakeFiles

test=develop
上级 feb39028
......@@ -76,7 +76,7 @@ list(REMOVE_ITEM TEST_OPS test_image_classification_resnet)
list(REMOVE_ITEM TEST_OPS test_bilinear_interp_op)
list(REMOVE_ITEM TEST_OPS test_nearest_interp_op)
list(REMOVE_ITEM TEST_OPS test_imperative_resnet)
list(REMOVE_ITEM TEST_OPS test_imperative_optimizer)
list(REMOVE_ITEM TEST_OPS test_imperative_mnist)
list(REMOVE_ITEM TEST_OPS test_ir_memory_optimize_transformer)
foreach(TEST_OP ${TEST_OPS})
py_test_modules(${TEST_OP} MODULES ${TEST_OP})
......@@ -87,7 +87,7 @@ py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL)
py_test_modules(test_nearest_interp_op MODULES test_nearest_interp_op SERIAL)
py_test_modules(test_imperative_resnet MODULES test_imperative_resnet ENVS
FLAGS_cudnn_deterministic=1)
py_test_modules(test_imperative_optimizer MODULES test_imperative_optimizer ENVS
py_test_modules(test_imperative_mnist MODULES test_imperative_mnist ENVS
FLAGS_cudnn_deterministic=1)
if(WITH_DISTRIBUTE)
py_test_modules(test_dist_train MODULES test_dist_train SERIAL)
......
......@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import contextlib
import unittest
import numpy as np
......@@ -21,112 +23,56 @@ import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from paddle.fluid.imperative.nn import FC
from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope
class SimpleImgConvPool(fluid.imperative.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
pool_size,
pool_stride,
pool_padding=0,
pool_type='max',
global_pooling=False,
conv_stride=1,
conv_padding=0,
conv_dilation=1,
conv_groups=1,
act=None,
use_cudnn=False,
param_attr=None,
bias_attr=None):
super(SimpleImgConvPool, self).__init__()
self._conv2d = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=conv_stride,
padding=conv_padding,
dilation=conv_dilation,
groups=conv_groups,
param_attr=None,
bias_attr=None,
use_cudnn=use_cudnn)
self._pool2d = Pool2D(
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
pool_padding=pool_padding,
global_pooling=global_pooling,
use_cudnn=use_cudnn)
def forward(self, inputs):
x = self._conv2d(inputs)
x = self._pool2d(x)
return x
class MNIST(fluid.imperative.Layer):
class MLP(fluid.imperative.Layer):
def __init__(self, param_attr=None, bias_attr=None):
super(MNIST, self).__init__()
self._simple_img_conv_pool_1 = SimpleImgConvPool(
1, 20, 5, 2, 2, act="relu")
self._fc1 = FC(10)
self._fc2 = FC(10)
self._simple_img_conv_pool_2 = SimpleImgConvPool(
20, 50, 5, 2, 2, act="relu")
def forward(self, inputs):
y = self._fc1(inputs)
y = self._fc2(y)
return y
pool_2_shape = 50 * 8 * 8
SIZE = 10
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
self._fc = FC(10,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)))
def forward(self, inputs):
x = self._simple_img_conv_pool_1(inputs)
x = self._simple_img_conv_pool_2(x)
x = self._fc(x)
return x
class TestImperativeOptimizerBase(unittest.TestCase):
def setUp(self):
self.batch_num = 2
def get_optimizer(self):
self.optimizer = SGDOptimizer(learning_rate=1e-3)
class TestImperativeMnist(unittest.TestCase):
def test_mnist_cpu_float32(self):
def test_optimizer_float32(self):
seed = 90
with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
mnist = MNIST()
sgd = SGDOptimizer(learning_rate=1e-3)
mlp = MLP()
self.get_optimizer()
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=128)
paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
dy_param_init_value = {}
for batch_id, data in enumerate(train_reader()):
if batch_id >= 2:
if batch_id >= self.batch_num:
break
x_data = np.array(
dy_x_data = np.array(
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
128, 1)
img = to_variable(x_data)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label._stop_gradient = True
cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
cost = mlp(img)
avg_loss = fluid.layers.reduce_mean(cost)
dy_out = avg_loss._numpy()
if batch_id == 0:
......@@ -135,7 +81,8 @@ class TestImperativeMnist(unittest.TestCase):
dy_param_init_value[param.name] = param._numpy()
avg_loss._backward()
sgd.minimize(avg_loss)
self.optimizer.minimize(avg_loss)
mlp.clear_gradients()
dy_param_value = {}
for param in fluid.default_main_program().global_block(
).all_parameters():
......@@ -149,23 +96,21 @@ class TestImperativeMnist(unittest.TestCase):
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
mnist = MNIST()
sgd = SGDOptimizer(learning_rate=1e-3)
self.get_optimizer()
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=128)
paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
img = fluid.layers.data(
name='pixel', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
sgd.minimize(avg_loss)
avg_loss = fluid.layers.reduce_mean(cost)
self.optimizer.minimize(avg_loss)
# initialize params and fetch them
static_param_init_value = {}
static_param_name_list = []
for param in fluid.default_startup_program().global_block(
).all_parameters():
for param in mnist.parameters():
static_param_name_list.append(param.name)
out = exe.run(fluid.default_startup_program(),
......@@ -175,10 +120,10 @@ class TestImperativeMnist(unittest.TestCase):
static_param_init_value[static_param_name_list[i]] = out[i]
for batch_id, data in enumerate(train_reader()):
if batch_id >= 2:
if batch_id >= self.batch_num:
break
x_data = np.array(
static_x_data = np.array(
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
[128, 1])
......@@ -186,7 +131,7 @@ class TestImperativeMnist(unittest.TestCase):
fetch_list = [avg_loss.name]
fetch_list.extend(static_param_name_list)
out = exe.run(fluid.default_main_program(),
feed={"pixel": x_data,
feed={"pixel": static_x_data,
"label": y_data},
fetch_list=fetch_list)
......@@ -196,11 +141,12 @@ class TestImperativeMnist(unittest.TestCase):
static_param_value[static_param_name_list[i - 1]] = out[i]
for key, value in six.iteritems(static_param_init_value):
self.assertTrue(
np.allclose(value.all(), dy_param_init_value[key].all()))
self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
self.assertTrue(np.allclose(static_out, dy_out))
for key, value in six.iteritems(static_param_value):
self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册