Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a3ce6aa8
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a3ce6aa8
编写于
7月 10, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add depthwise conv test
上级
198164ad
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
209 addition
and
0 deletion
+209
-0
paddle/function/CMakeLists.txt
paddle/function/CMakeLists.txt
+1
-0
paddle/function/DepthwiseConvOpTest.cpp
paddle/function/DepthwiseConvOpTest.cpp
+208
-0
未找到文件。
paddle/function/CMakeLists.txt
浏览文件 @
a3ce6aa8
...
...
@@ -37,6 +37,7 @@ if(WITH_GPU)
add_simple_unittest
(
MulOpTest
)
add_simple_unittest
(
CosSimOpTest
)
add_simple_unittest
(
RowConvOpTest
)
add_simple_unittest
(
DepthwiseConvOpTest
)
endif
()
add_simple_unittest
(
ConvOpTest
)
...
...
paddle/function/DepthwiseConvOpTest.cpp
0 → 100644
浏览文件 @
a3ce6aa8
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"
namespace
paddle
{
enum
TestType
{
kForwardTest
=
0
,
kBackwardInputTest
=
1
,
kBackwardFilterTest
=
2
,
};
template
<
DeviceType
DType1
,
DeviceType
DType2
>
class
DepthwiseConvolutionTest
{
public:
DepthwiseConvolutionTest
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
TestType
type
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
1
,
32
})
{
for
(
size_t
inputSize
:
{
7
,
14
,
54
})
{
for
(
size_t
filterSize
:
{
1
,
3
,
5
})
{
for
(
size_t
inputChannels
:
{
64
,
128
})
{
size_t
outputChannels
=
inputChannels
;
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
size_t
groups
=
inputChannels
;
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
{
inputChannels
,
1
,
1
,
filterSize
,
filterSize
};
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
();
}
}
}
}
}
}
}
}
};
// Mainly used to test cases where the height and width (input, filter)
// are not equal.
template
<
DeviceType
DType1
,
DeviceType
DType2
>
class
DepthwiseConvolutionTest2
{
public:
DepthwiseConvolutionTest2
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
TestType
type
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
16
})
{
for
(
size_t
inputHeight
:
{
7
,
31
})
{
for
(
size_t
inputWidth
:
{
10
,
54
})
{
for
(
size_t
filterHeight
:
{
1
,
5
})
{
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
inputChannels
:
{
32
})
{
size_t
outputChannels
=
inputChannels
;
size_t
stride
=
1
;
size_t
padding
=
0
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
size_t
outputWidth
=
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputHeight
<<
" inputWidth="
<<
inputWidth
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterHeight
<<
" filterWidth="
<<
filterWidth
<<
" outputHeight="
<<
outputHeight
<<
" outputWidth="
<<
outputWidth
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
size_t
groups
=
inputChannels
;
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
};
TensorShape
filter
{
inputChannels
,
1
,
1
,
filterHeight
,
filterWidth
};
TensorShape
output
{
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
();
}
}
}
}
}
}
}
}
};
#ifndef PADDLE_ONLY_CPU
TEST
(
Forward
,
GEMM2
)
{
DepthwiseConvolutionTest
<
DEVICE_TYPE_GPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConv-GPU"
,
"DepthwiseConv-GPU"
,
kForwardTest
);
DepthwiseConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConv-GPU"
,
"DepthwiseConv-GPU"
,
kForwardTest
);
}
TEST
(
BackwardInput
,
GEMM
)
{
DepthwiseConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConvGradInput-GPU"
,
"DepthwiseConvGradInput-GPU"
,
kBackwardInputTest
);
DepthwiseConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConvGradInput-GPU"
,
"DepthwiseConvGradInput-GPU"
,
kBackwardInputTest
);
}
TEST
(
BackwardFilter
,
GEMM
)
{
DepthwiseConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConvGradFilter-GPU"
,
"DepthwiseConvGradFilter-GPU"
,
kBackwardFilterTest
);
DepthwiseConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConvGradFilter-GPU"
,
"DepthwiseConvGradFilter-GPU"
,
kBackwardFilterTest
);
}
#endif
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录