提交 a3ada68a 编写于 作者: Z zlx

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into improve_pruning

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "DetectionUtil.h"
namespace paddle {
size_t appendWithPermute(const Matrix& inMatrix,
size_t height,
size_t width,
size_t outTotalSize,
size_t outOffset,
size_t batchSize,
Matrix& outMatrix,
PermMode permMode) {
CHECK_EQ(inMatrix.useGpu(), outMatrix.useGpu());
bool useGpu = inMatrix.useGpu();
if (permMode == kNCHWToNHWC) {
size_t inElementCnt = inMatrix.getElementCnt();
size_t channels = inElementCnt / (height * width * batchSize);
size_t imgSize = height * width;
for (size_t i = 0; i < batchSize; ++i) {
size_t offset = i * (outTotalSize / batchSize) + outOffset;
const MatrixPtr inTmp = Matrix::create(
const_cast<real*>(inMatrix.getData()) + i * channels * imgSize,
channels,
imgSize,
false,
useGpu);
MatrixPtr outTmp =
Matrix::create(const_cast<real*>(outMatrix.getData()) + offset,
imgSize,
channels,
false,
useGpu);
inTmp->transpose(outTmp, false);
}
return channels * imgSize;
} else {
LOG(FATAL) << "Unkown permute mode";
}
}
size_t decomposeWithPermute(const Matrix& inMatrix,
size_t height,
size_t width,
size_t inTotalSize,
size_t inOffset,
size_t batchSize,
Matrix& outMatrix,
PermMode permMode) {
CHECK_EQ(inMatrix.useGpu(), outMatrix.useGpu());
bool useGpu = inMatrix.useGpu();
if (permMode == kNHWCToNCHW) {
size_t outElementCnt = outMatrix.getElementCnt();
size_t channels = outElementCnt / (height * width * batchSize);
size_t imgSize = height * width;
for (size_t i = 0; i < batchSize; ++i) {
size_t offset = i * (inTotalSize / batchSize) + inOffset;
const MatrixPtr inTmp =
Matrix::create(const_cast<real*>(inMatrix.getData()) + offset,
imgSize,
channels,
false,
useGpu);
MatrixPtr outTmp = Matrix::create(
const_cast<real*>(outMatrix.getData()) + i * channels * imgSize,
channels,
imgSize,
false,
useGpu);
inTmp->transpose(outTmp, false);
}
return channels * imgSize;
} else {
LOG(FATAL) << "Unkown permute mode";
}
}
real jaccardOverlap(const NormalizedBBox& bbox1, const NormalizedBBox& bbox2) {
if (bbox2.xMin > bbox1.xMax || bbox2.xMax < bbox1.xMin ||
bbox2.yMin > bbox1.yMax || bbox2.yMax < bbox1.yMin) {
return 0.0;
} else {
real interXMin = std::max(bbox1.xMin, bbox2.xMin);
real interYMin = std::max(bbox1.yMin, bbox2.yMin);
real interXMax = std::min(bbox1.xMax, bbox2.xMax);
real interYMax = std::min(bbox1.yMax, bbox2.yMax);
real interWidth = interXMax - interXMin;
real interHeight = interYMax - interYMin;
real interArea = interWidth * interHeight;
real bboxArea1 = bbox1.getArea();
real bboxArea2 = bbox2.getArea();
return interArea / (bboxArea1 + bboxArea2 - interArea);
}
}
void encodeBBoxWithVar(const NormalizedBBox& priorBBox,
const vector<real>& priorBBoxVar,
const NormalizedBBox& gtBBox,
vector<real>& outVec) {
real priorBBoxWidth = priorBBox.getWidth();
real priorBBoxHeight = priorBBox.getHeight();
real priorBBoxCenterX = priorBBox.getCenterX();
real priorBBoxCenterY = priorBBox.getCenterY();
real gtBBoxWidth = gtBBox.getWidth();
real gtBBoxHeight = gtBBox.getHeight();
real gtBBoxCenterX = gtBBox.getCenterX();
real gtBBoxCenterY = gtBBox.getCenterY();
outVec.clear();
outVec.push_back((gtBBoxCenterX - priorBBoxCenterX) / priorBBoxWidth /
priorBBoxVar[0]);
outVec.push_back((gtBBoxCenterY - priorBBoxCenterY) / priorBBoxHeight /
priorBBoxVar[1]);
outVec.push_back(std::log(std::fabs(gtBBoxWidth / priorBBoxWidth)) /
priorBBoxVar[2]);
outVec.push_back(std::log(std::fabs(gtBBoxHeight / priorBBoxHeight)) /
priorBBoxVar[3]);
}
NormalizedBBox decodeBBoxWithVar(const NormalizedBBox& priorBBox,
const vector<real>& priorBBoxVar,
const vector<real>& locPredData) {
real priorBBoxWidth = priorBBox.getWidth();
real priorBBoxHeight = priorBBox.getHeight();
real priorBBoxCenterX = priorBBox.getCenterX();
real priorBBoxCenterY = priorBBox.getCenterY();
real decodedBBoxCenterX =
priorBBoxVar[0] * locPredData[0] * priorBBoxWidth + priorBBoxCenterX;
real decodedBBoxCenterY =
priorBBoxVar[1] * locPredData[1] * priorBBoxHeight + priorBBoxCenterY;
real decodedBBoxWidth =
std::exp(priorBBoxVar[2] * locPredData[2]) * priorBBoxWidth;
real decodedBBoxHeight =
std::exp(priorBBoxVar[3] * locPredData[3]) * priorBBoxHeight;
NormalizedBBox decodedBBox;
decodedBBox.xMin = decodedBBoxCenterX - decodedBBoxWidth / 2;
decodedBBox.yMin = decodedBBoxCenterY - decodedBBoxHeight / 2;
decodedBBox.xMax = decodedBBoxCenterX + decodedBBoxWidth / 2;
decodedBBox.yMax = decodedBBoxCenterY + decodedBBoxHeight / 2;
return decodedBBox;
}
void getBBoxFromPriorData(const real* priorData,
const size_t numBBoxes,
vector<NormalizedBBox>& bboxVec) {
size_t outOffset = bboxVec.size();
bboxVec.resize(bboxVec.size() + numBBoxes);
for (size_t i = 0; i < numBBoxes; ++i) {
NormalizedBBox bbox;
bbox.xMin = *(priorData + i * 8);
bbox.yMin = *(priorData + i * 8 + 1);
bbox.xMax = *(priorData + i * 8 + 2);
bbox.yMax = *(priorData + i * 8 + 3);
bboxVec[outOffset + i] = bbox;
}
}
void getBBoxVarFromPriorData(const real* priorData,
const size_t num,
vector<vector<real>>& varVec) {
size_t outOffset = varVec.size();
varVec.resize(varVec.size() + num);
for (size_t i = 0; i < num; ++i) {
vector<real> var;
var.push_back(*(priorData + i * 8 + 4));
var.push_back(*(priorData + i * 8 + 5));
var.push_back(*(priorData + i * 8 + 6));
var.push_back(*(priorData + i * 8 + 7));
varVec[outOffset + i] = var;
}
}
void getBBoxFromLabelData(const real* labelData,
const size_t numBBoxes,
vector<NormalizedBBox>& bboxVec) {
size_t outOffset = bboxVec.size();
bboxVec.resize(bboxVec.size() + numBBoxes);
for (size_t i = 0; i < numBBoxes; ++i) {
NormalizedBBox bbox;
bbox.xMin = *(labelData + i * 6 + 1);
bbox.yMin = *(labelData + i * 6 + 2);
bbox.xMax = *(labelData + i * 6 + 3);
bbox.yMax = *(labelData + i * 6 + 4);
real isDifficult = *(labelData + i * 6 + 5);
if (std::abs(isDifficult - 0.0) < 1e-6)
bbox.isDifficult = false;
else
bbox.isDifficult = true;
bboxVec[outOffset + i] = bbox;
}
}
void getBBoxFromDetectData(const real* detectData,
const size_t numBBoxes,
vector<real>& labelVec,
vector<real>& scoreVec,
vector<NormalizedBBox>& bboxVec) {
size_t outOffset = bboxVec.size();
labelVec.resize(outOffset + numBBoxes);
scoreVec.resize(outOffset + numBBoxes);
bboxVec.resize(outOffset + numBBoxes);
for (size_t i = 0; i < numBBoxes; ++i) {
labelVec[outOffset + i] = *(detectData + i * 7 + 1);
scoreVec[outOffset + i] = *(detectData + i * 7 + 2);
NormalizedBBox bbox;
bbox.xMin = *(detectData + i * 7 + 3);
bbox.yMin = *(detectData + i * 7 + 4);
bbox.xMax = *(detectData + i * 7 + 5);
bbox.yMax = *(detectData + i * 7 + 6);
bboxVec[outOffset + i] = bbox;
}
}
void matchBBox(const vector<NormalizedBBox>& priorBBoxes,
const vector<NormalizedBBox>& gtBBoxes,
real overlapThreshold,
vector<int>* matchIndices,
vector<real>* matchOverlaps) {
map<size_t, map<size_t, real>> overlaps;
size_t numPriors = priorBBoxes.size();
size_t numGTs = gtBBoxes.size();
matchIndices->clear();
matchIndices->resize(numPriors, -1);
matchOverlaps->clear();
matchOverlaps->resize(numPriors, 0.0);
// Store the positive overlap between predictions and ground truth
for (size_t i = 0; i < numPriors; ++i) {
for (size_t j = 0; j < numGTs; ++j) {
real overlap = jaccardOverlap(priorBBoxes[i], gtBBoxes[j]);
if (overlap > 1e-6) {
(*matchOverlaps)[i] = std::max((*matchOverlaps)[i], overlap);
overlaps[i][j] = overlap;
}
}
}
// Bipartite matching
vector<int> gtPool;
for (size_t i = 0; i < numGTs; ++i) {
gtPool.push_back(i);
}
while (gtPool.size() > 0) {
// Find the most overlapped gt and corresponding predictions
int maxPriorIdx = -1;
int maxGTIdx = -1;
real maxOverlap = -1.0;
for (map<size_t, map<size_t, real>>::iterator it = overlaps.begin();
it != overlaps.end();
++it) {
size_t i = it->first;
if ((*matchIndices)[i] != -1) {
// The prediction already has matched ground truth or is ignored
continue;
}
for (size_t p = 0; p < gtPool.size(); ++p) {
int j = gtPool[p];
if (it->second.find(j) == it->second.end()) {
// No overlap between the i-th prediction and j-th ground truth
continue;
}
// Find the maximum overlapped pair
if (it->second[j] > maxOverlap) {
maxPriorIdx = (int)i;
maxGTIdx = (int)j;
maxOverlap = it->second[j];
}
}
}
if (maxPriorIdx == -1) {
break;
} else {
(*matchIndices)[maxPriorIdx] = maxGTIdx;
(*matchOverlaps)[maxPriorIdx] = maxOverlap;
gtPool.erase(std::find(gtPool.begin(), gtPool.end(), maxGTIdx));
}
}
// Get most overlaped for the rest prediction bboxes
for (map<size_t, map<size_t, real>>::iterator it = overlaps.begin();
it != overlaps.end();
++it) {
size_t i = it->first;
if ((*matchIndices)[i] != -1) {
// The prediction already has matched ground truth or is ignored
continue;
}
int maxGTIdx = -1;
real maxOverlap = -1;
for (size_t j = 0; j < numGTs; ++j) {
if (it->second.find(j) == it->second.end()) {
// No overlap between the i-th prediction and j-th ground truth
continue;
}
// Find the maximum overlapped pair
real overlap = it->second[j];
if (overlap > maxOverlap && overlap >= overlapThreshold) {
maxGTIdx = j;
maxOverlap = overlap;
}
}
if (maxGTIdx != -1) {
(*matchIndices)[i] = maxGTIdx;
(*matchOverlaps)[i] = maxOverlap;
}
}
}
pair<size_t, size_t> generateMatchIndices(
const Matrix& priorValue,
const size_t numPriorBBoxes,
const Matrix& gtValue,
const int* gtStartPosPtr,
const size_t seqNum,
const vector<vector<real>>& maxConfScore,
const size_t batchSize,
const real overlapThreshold,
const real negOverlapThreshold,
const size_t negPosRatio,
vector<vector<int>>* matchIndicesVecPtr,
vector<vector<int>>* negIndicesVecPtr) {
vector<NormalizedBBox> priorBBoxes; // share same prior bboxes
getBBoxFromPriorData(priorValue.getData(), numPriorBBoxes, priorBBoxes);
size_t totalPos = 0;
size_t totalNeg = 0;
for (size_t n = 0; n < batchSize; ++n) {
vector<int> matchIndices;
vector<int> negIndices;
vector<real> matchOverlaps;
matchIndices.resize(numPriorBBoxes, -1);
matchOverlaps.resize(numPriorBBoxes, 0.0);
size_t numGTBBoxes = 0;
if (n < seqNum) numGTBBoxes = gtStartPosPtr[n + 1] - gtStartPosPtr[n];
if (!numGTBBoxes) {
matchIndicesVecPtr->push_back(matchIndices);
negIndicesVecPtr->push_back(negIndices);
continue;
}
vector<NormalizedBBox> gtBBoxes;
getBBoxFromLabelData(
gtValue.getData() + gtStartPosPtr[n] * 6, numGTBBoxes, gtBBoxes);
matchBBox(
priorBBoxes, gtBBoxes, overlapThreshold, &matchIndices, &matchOverlaps);
size_t numPos = 0;
size_t numNeg = 0;
for (size_t i = 0; i < matchIndices.size(); ++i)
if (matchIndices[i] != -1) ++numPos;
totalPos += numPos;
vector<pair<real, size_t>> scoresIndices;
for (size_t i = 0; i < matchIndices.size(); ++i)
if (matchIndices[i] == -1 && matchOverlaps[i] < negOverlapThreshold) {
scoresIndices.push_back(std::make_pair(maxConfScore[n][i], i));
++numNeg;
}
numNeg = std::min(static_cast<size_t>(numPos * negPosRatio), numNeg);
std::sort(scoresIndices.begin(),
scoresIndices.end(),
sortScorePairDescend<size_t>);
for (size_t i = 0; i < numNeg; ++i)
negIndices.push_back(scoresIndices[i].second);
totalNeg += numNeg;
matchIndicesVecPtr->push_back(matchIndices);
negIndicesVecPtr->push_back(negIndices);
}
return std::make_pair(totalPos, totalNeg);
}
void getMaxConfidenceScores(const real* confData,
const size_t batchSize,
const size_t numPriorBBoxes,
const size_t numClasses,
const size_t backgroundId,
vector<vector<real>>* maxConfScoreVecPtr) {
maxConfScoreVecPtr->clear();
for (size_t i = 0; i < batchSize; ++i) {
vector<real> maxConfScore;
for (size_t j = 0; j < numPriorBBoxes; ++j) {
int offset = j * numClasses;
real maxVal = -FLT_MAX;
real maxPosVal = -FLT_MAX;
real maxScore = 0.0;
for (size_t c = 0; c < numClasses; ++c) {
maxVal = std::max<real>(confData[offset + c], maxVal);
if (c != backgroundId)
maxPosVal = std::max<real>(confData[offset + c], maxPosVal);
}
real sum = 0.0;
for (size_t c = 0; c < numClasses; ++c)
sum += std::exp(confData[offset + c] - maxVal);
maxScore = std::exp(maxPosVal - maxVal) / sum;
maxConfScore.push_back(maxScore);
}
confData += numPriorBBoxes * numClasses;
maxConfScoreVecPtr->push_back(maxConfScore);
}
}
template <typename T>
bool sortScorePairDescend(const pair<real, T>& pair1,
const pair<real, T>& pair2) {
return pair1.first > pair2.first;
}
template <>
bool sortScorePairDescend(const pair<real, NormalizedBBox>& pair1,
const pair<real, NormalizedBBox>& pair2) {
return pair1.first > pair2.first;
}
void applyNMSFast(const vector<NormalizedBBox>& bboxes,
const real* confScoreData,
size_t classIdx,
size_t topK,
real confThreshold,
real nmsThreshold,
size_t numPriorBBoxes,
size_t numClasses,
vector<size_t>* indices) {
vector<pair<real, size_t>> scores;
for (size_t i = 0; i < numPriorBBoxes; ++i) {
size_t confOffset = i * numClasses + classIdx;
if (confScoreData[confOffset] > confThreshold)
scores.push_back(std::make_pair(confScoreData[confOffset], i));
}
std::stable_sort(scores.begin(), scores.end(), sortScorePairDescend<size_t>);
if (topK > 0 && topK < scores.size()) scores.resize(topK);
while (scores.size() > 0) {
const size_t idx = scores.front().second;
bool keep = true;
for (size_t i = 0; i < indices->size(); ++i) {
if (keep) {
const size_t savedIdx = (*indices)[i];
real overlap = jaccardOverlap(bboxes[idx], bboxes[savedIdx]);
keep = overlap <= nmsThreshold;
} else {
break;
}
}
if (keep) indices->push_back(idx);
scores.erase(scores.begin());
}
}
size_t getDetectionIndices(
const real* confData,
const size_t numPriorBBoxes,
const size_t numClasses,
const size_t backgroundId,
const size_t batchSize,
const size_t confThreshold,
const size_t nmsTopK,
const real nmsThreshold,
const size_t keepTopK,
const vector<vector<NormalizedBBox>>& allDecodedBBoxes,
vector<map<size_t, vector<size_t>>>* allDetectionIndices) {
size_t totalKeepNum = 0;
for (size_t n = 0; n < batchSize; ++n) {
const vector<NormalizedBBox>& decodedBBoxes = allDecodedBBoxes[n];
size_t numDetected = 0;
map<size_t, vector<size_t>> indices;
size_t confOffset = n * numPriorBBoxes * numClasses;
for (size_t c = 0; c < numClasses; ++c) {
if (c == backgroundId) continue;
applyNMSFast(decodedBBoxes,
confData + confOffset,
c,
nmsTopK,
confThreshold,
nmsThreshold,
numPriorBBoxes,
numClasses,
&(indices[c]));
numDetected += indices[c].size();
}
if (keepTopK > 0 && numDetected > keepTopK) {
vector<pair<real, pair<size_t, size_t>>> scoreIndexPairs;
for (size_t c = 0; c < numClasses; ++c) {
const vector<size_t>& labelIndices = indices[c];
for (size_t i = 0; i < labelIndices.size(); ++i) {
size_t idx = labelIndices[i];
scoreIndexPairs.push_back(
std::make_pair((confData + confOffset)[idx * numClasses + c],
std::make_pair(c, idx)));
}
}
std::sort(scoreIndexPairs.begin(),
scoreIndexPairs.end(),
sortScorePairDescend<pair<size_t, size_t>>);
scoreIndexPairs.resize(keepTopK);
map<size_t, vector<size_t>> newIndices;
for (size_t i = 0; i < scoreIndexPairs.size(); ++i) {
size_t label = scoreIndexPairs[i].second.first;
size_t idx = scoreIndexPairs[i].second.second;
newIndices[label].push_back(idx);
}
allDetectionIndices->push_back(newIndices);
totalKeepNum += keepTopK;
} else {
allDetectionIndices->push_back(indices);
totalKeepNum += numDetected;
}
}
return totalKeepNum;
}
void getDetectionOutput(const real* confData,
const size_t numKept,
const size_t numPriorBBoxes,
const size_t numClasses,
const size_t batchSize,
const vector<map<size_t, vector<size_t>>>& allIndices,
const vector<vector<NormalizedBBox>>& allDecodedBBoxes,
Matrix& out) {
MatrixPtr outBuffer;
Matrix::resizeOrCreate(outBuffer, numKept, 7, false, false);
real* bufferData = outBuffer->getData();
size_t count = 0;
for (size_t n = 0; n < batchSize; ++n) {
for (map<size_t, vector<size_t>>::const_iterator it = allIndices[n].begin();
it != allIndices[n].end();
++it) {
size_t label = it->first;
const vector<size_t>& indices = it->second;
const vector<NormalizedBBox>& decodedBBoxes = allDecodedBBoxes[n];
for (size_t i = 0; i < indices.size(); ++i) {
size_t idx = indices[i];
size_t confOffset = n * numPriorBBoxes * numClasses + idx * numClasses;
bufferData[count * 7] = n;
bufferData[count * 7 + 1] = label;
bufferData[count * 7 + 2] = (confData + confOffset)[label];
NormalizedBBox clippedBBox = clipBBox(decodedBBoxes[idx]);
bufferData[count * 7 + 3] = clippedBBox.xMin;
bufferData[count * 7 + 4] = clippedBBox.yMin;
bufferData[count * 7 + 5] = clippedBBox.xMax;
bufferData[count * 7 + 6] = clippedBBox.yMax;
++count;
}
}
}
out.copyFrom(bufferData, numKept * 7);
}
NormalizedBBox clipBBox(const NormalizedBBox& bbox) {
real realOne = static_cast<real>(1.0);
real realZero = static_cast<real>(0.0);
NormalizedBBox clippedBBox;
clippedBBox.xMin = std::max(std::min(bbox.xMin, realOne), realZero);
clippedBBox.yMin = std::max(std::min(bbox.yMin, realOne), realZero);
clippedBBox.xMax = std::max(std::min(bbox.xMax, realOne), realZero);
clippedBBox.yMax = std::max(std::min(bbox.yMax, realOne), realZero);
return clippedBBox;
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <float.h>
#include <algorithm>
#include <vector>
#include "paddle/math/Matrix.h"
using std::vector;
using std::pair;
using std::map;
namespace paddle {
template <typename T>
struct BBoxBase {
BBoxBase(T xMin, T yMin, T xMax, T yMax)
: xMin(xMin), yMin(yMin), xMax(xMax), yMax(yMax), isDifficult(false) {}
BBoxBase() {}
T getWidth() const { return xMax - xMin; }
T getHeight() const { return yMax - yMin; }
T getCenterX() const { return (xMin + xMax) / 2; }
T getCenterY() const { return (yMin + yMax) / 2; }
T getArea() const { return getWidth() * getHeight(); }
// coordinate of bounding box
T xMin;
T yMin;
T xMax;
T yMax;
// whether difficult object (e.g. object with heavy occlusion is difficult)
bool isDifficult;
};
struct NormalizedBBox : BBoxBase<real> {
NormalizedBBox() : BBoxBase<real>() {}
};
enum PermMode { kNCHWToNHWC, kNHWCToNCHW };
/**
* @brief First permute input maxtrix then append to output matrix
*/
size_t appendWithPermute(const Matrix& inMatrix,
size_t height,
size_t width,
size_t outTotalSize,
size_t outOffset,
size_t batchSize,
Matrix& outMatrix,
PermMode permMode);
/**
* @brief First permute input maxtrix then decompose to output
*/
size_t decomposeWithPermute(const Matrix& inMatrix,
size_t height,
size_t width,
size_t totalSize,
size_t offset,
size_t batchSize,
Matrix& outMatrix,
PermMode permMode);
/**
* @brief Compute jaccard overlap between two bboxes.
* @param bbox1 The first bbox
* @param bbox2 The second bbox
*/
real jaccardOverlap(const NormalizedBBox& bbox1, const NormalizedBBox& bbox2);
/**
* @brief Compute offset parameters between prior bbox and ground truth bbox
* and variances of prior bbox are considered
* @param priorBBox Input prior bbox
* @param priorBBoxVar Variance parameters of prior bbox
* @param gtBBox Groundtruth bbox
* @param outVec Output vector
*/
void encodeBBoxWithVar(const NormalizedBBox& priorBBox,
const vector<real>& priorBBoxVar,
const NormalizedBBox& gtBBox,
vector<real>& outVec);
/**
* @brief Decode prior bbox with offset parameters
* and variances of prior bbox are considered
* @param priorBBox Prior bbox to be decoded
* @param priorBBoxVar Variance parameters of prior bbox
* @param locPredData Offset parameters
*/
NormalizedBBox decodeBBoxWithVar(const NormalizedBBox& priorBBox,
const vector<real>& priorBBoxVar,
const vector<real>& locPredData);
/**
* @brief Extract bboxes from prior matrix, the layout is
* xmin1 | ymin1 | xmax1 | ymax1 | xmin1Var | ymin1Var | xmax1Var | ymax1Var ...
* @param priorData Matrix of prior value
* @param numBBoxes Number of bbox to be extracted
* @param bboxVec Append to the vector
*/
void getBBoxFromPriorData(const real* priorData,
const size_t numBBoxes,
vector<NormalizedBBox>& bboxVec);
/**
* @brief Extract labels, scores and bboxes from detection matrix, the layout is
* imageId | label | score | xmin | ymin | xmax | ymax
* @param detectData Matrix of detection value
* @param numBBoxes Number of bbox to be extracted
* @param labelVec Label of bbox
* @param scoreVec Score of bbox
* @param bboxVec Append to the vector
*/
void getBBoxFromDetectData(const real* detectData,
const size_t numBBoxes,
vector<real>& labelVec,
vector<real>& scoreVec,
vector<NormalizedBBox>& bboxVec);
/**
* @brief Extract variances from prior matrix, the layout is
* xmin1 | ymin1 | xmax1 | ymax1 | xmin1Var | ymin1Var | xmax1Var | ymax1Var ...
* @param priorData Matrix of prior value
* @param num Number to be extracted
* @param varVec Append to the vector
*/
void getBBoxVarFromPriorData(const real* priorData,
const size_t num,
vector<vector<real>>& varVec);
/**
* @brief Extract bboxes from label matrix, the layout is
* class1_1 | xmin1_1 | ymin1_1 | xmax1_1 | ymax1_1 | difficult1_1 | ...
* @param labelData Matrix of label value
* @param numBBoxes Number to be extracted
* @param bboxVec Append to the vector
*/
void getBBoxFromLabelData(const real* labelData,
const size_t numBBoxes,
vector<NormalizedBBox>& bboxVec);
/**
* @brief Match prior bbox to groundtruth bbox, the strategy is:
1. Find the most overlaped bbox pair (prior and groundtruth)
2. For rest of prior bboxes find the most overlaped groundtruth bbox
* @param priorBBoxes prior bbox
* @param gtBBoxes groundtruth bbox
* @param overlapThreshold Low boundary of overlap (judge whether matched)
* @param matchIndices For each prior bbox, groundtruth bbox index if matched
otherwise -1
* @param matchOverlaps For each prior bbox, overap with all groundtruth bboxes
*/
void matchBBox(const vector<NormalizedBBox>& priorBBoxes,
const vector<NormalizedBBox>& gtBBoxes,
real overlapThreshold,
vector<int>* matchIndices,
vector<real>* matchOverlaps);
/**
* @brief Generate positive bboxes and negative bboxes,
|positive bboxes|/|negative bboxes| is negPosRatio
* @param priorValue Prior value
* @param numPriorBBoxes Number of prior bbox
* @param gtValue Groundtruth value
* @param gtStartPosPtr Since groundtruth value stored as sequence type,
this parameter indicates start position of each record
* @param seqNum Number of sequence
* @param maxConfScore Classification score for prior bbox, used to mine
negative examples
* @param batchSize Image number
* @param overlapThreshold Low boundary of overap
* @param negOverlapThreshold Upper boundary of overap (judge negative example)
* @param negPosRatio Control number of negative bboxes
* @param matchIndicesVecPtr Save indices of matched prior bbox
* @param negIndicesVecPtr Save indices of negative prior bbox
*/
pair<size_t, size_t> generateMatchIndices(
const Matrix& priorValue,
const size_t numPriorBBoxes,
const Matrix& gtValue,
const int* gtStartPosPtr,
const size_t seqNum,
const vector<vector<real>>& maxConfScore,
const size_t batchSize,
const real overlapThreshold,
const real negOverlapThreshold,
const size_t negPosRatio,
vector<vector<int>>* matchIndicesVecPtr,
vector<vector<int>>* negIndicesVecPtr);
/**
* @brief Get max confidence score for each prior bbox
* @param confData Confidence scores, layout is
* class1 score | class2 score | ... | classN score ...
* @param batchSize Image number
* @param numPriorBBoxes Prior bbox number
* @param numClasses Classes number
* @param backgroundId Background id
* @param maxConfScoreVecPtr Ouput
*/
void getMaxConfidenceScores(const real* confData,
const size_t batchSize,
const size_t numPriorBBoxes,
const size_t numClasses,
const size_t backgroundId,
vector<vector<real>>* maxConfScoreVecPtr);
template <typename T>
bool sortScorePairDescend(const pair<real, T>& pair1,
const pair<real, T>& pair2);
template <>
bool sortScorePairDescend(const pair<real, NormalizedBBox>& pair1,
const pair<real, NormalizedBBox>& pair2);
/**
* @brief Do NMS for bboxes to remove duplicated bboxes
* @param bboxes BBoxes to apply NMS
* @param confScoreData Confidence scores
* @param classIdx Class to do NMS
* @param topK Number to keep
* @param confThreshold Low boundary of confidence score
* @param nmsThreshold Threshold of overlap
* @param numPriorBBoxes Total number of prior bboxes
* @param numClasses Total class number
* @param indices Indices of high quality bboxes
*/
void applyNMSFast(const vector<NormalizedBBox>& bboxes,
const real* confScoreData,
size_t classIdx,
size_t topK,
real confThreshold,
real nmsThreshold,
size_t numPriorBBoxes,
size_t numClasses,
vector<size_t>* indices);
/**
* @brief Get detection results which satify requirements
* @param numPriorBBoxes Prior bbox number
* @param numClasses Class number
* @param backgroundId Background class
* @param batchSize Image number
* @param confThreshold Threshold of class confidence
* @param nmsTopK Used in NMS operation to keep top k bbox
* @param nmsThreshold Used in NMS, threshold of overlap
* @param keepTopK How many bboxes keeped in an image
* @param allDecodedBBoxes Decoded bboxes for all images
* @param allDetectionIndices Save detection bbox indices
*/
size_t getDetectionIndices(
const real* confData,
const size_t numPriorBBoxes,
const size_t numClasses,
const size_t backgroundId,
const size_t batchSize,
const size_t confThreshold,
const size_t nmsTopK,
const real nmsThreshold,
const size_t keepTopK,
const vector<vector<NormalizedBBox>>& allDecodedBBoxes,
vector<map<size_t, vector<size_t>>>* allDetectionIndices);
/**
* @brief Get detection results
* @param confData Confidence scores
* @param numPriorBBoxes Prior bbox number
* @param numClasses Class number
* @param batchSize Image number
* @param allIndices Indices of predicted bboxes
* @param allDecodedBBoxes BBoxes decoded
* @param out Output matrix
* image number | label | confidence score | xMin | yMin | xMax | yMax
*/
void getDetectionOutput(const real* confData,
const size_t numKept,
const size_t numPriorBBoxes,
const size_t numClasses,
const size_t batchSize,
const vector<map<size_t, vector<size_t>>>& allIndices,
const vector<vector<NormalizedBBox>>& allDecodedBBoxes,
Matrix& out);
NormalizedBBox clipBBox(const NormalizedBBox& bbox);
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册