Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a39eba77
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a39eba77
编写于
9月 10, 2018
作者:
Q
qingqing01
提交者:
GitHub
9月 10, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Implement norm_op by CUDA instead of Eigen. (#13273)
* Implement norm_op by CUDA instead of Eigen. * Remove the commented code.
上级
5023530a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
169 addition
and
7 deletion
+169
-7
paddle/fluid/operators/norm_op.cu
paddle/fluid/operators/norm_op.cu
+143
-6
paddle/fluid/operators/norm_op.h
paddle/fluid/operators/norm_op.h
+4
-1
python/paddle/fluid/tests/unittests/test_norm_op.py
python/paddle/fluid/tests/unittests/test_norm_op.py
+22
-0
未找到文件。
paddle/fluid/operators/norm_op.cu
浏览文件 @
a39eba77
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -11,14 +11,151 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include <algorithm>
#include "cub/cub.cuh"
#include "paddle/fluid/operators/norm_op.h"
namespace
paddle
{
namespace
operators
{
__device__
__forceinline__
float
square_root
(
float
x
)
{
return
sqrtf
(
x
);
}
__device__
__forceinline__
double
square_root
(
double
x
)
{
return
sqrt
(
x
);
}
template
<
typename
T
,
int
BlockDim
>
__global__
void
Normalize
(
const
T
*
x
,
const
int
pre
,
const
int
axis_n
,
// dim in axis
const
int
post
,
const
T
eps
,
T
*
y
,
T
*
out_norm
)
{
typedef
cub
::
BlockReduce
<
T
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
int
num
=
pre
*
post
;
for
(
int
i
=
blockIdx
.
x
;
i
<
num
;
i
+=
gridDim
.
x
)
{
int
base
=
(
i
/
post
)
*
post
*
axis_n
+
(
i
%
post
);
T
sum
=
0.0
;
__shared__
T
norm
;
for
(
int
j
=
threadIdx
.
x
;
j
<
axis_n
;
j
+=
blockDim
.
x
)
{
const
T
x_ij
=
x
[
base
+
j
*
post
];
sum
+=
x_ij
*
x_ij
;
}
T
reduce_result
=
BlockReduce
(
temp_storage
).
Sum
(
sum
);
if
(
threadIdx
.
x
==
0
)
{
norm
=
square_root
(
reduce_result
+
eps
);
out_norm
[
i
]
=
norm
;
}
__syncthreads
();
for
(
int
j
=
threadIdx
.
x
;
j
<
axis_n
;
j
+=
blockDim
.
x
)
{
const
int
index
=
base
+
j
*
post
;
y
[
index
]
=
x
[
index
]
/
norm
;
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
NormCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out_y
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out_norm
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Norm"
);
const
T
*
x
=
in_x
->
data
<
T
>
();
T
*
y
=
out_y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
norm
=
out_norm
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
xdim
=
in_x
->
dims
();
auto
ndim
=
out_norm
->
dims
();
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
T
eps
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
int
pre
,
n
,
post
;
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
);
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
const
int
block
=
512
;
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
const
int
max_blocks
=
std
::
max
(
max_threads
/
block
,
1
);
int
grid
=
std
::
min
(
max_blocks
,
pre
*
post
);
Normalize
<
T
,
block
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
x
,
pre
,
n
,
post
,
eps
,
y
,
norm
);
}
};
template
<
typename
T
,
int
BlockDim
>
__global__
void
NormalizeGradient
(
const
T
*
x
,
const
T
*
x_norm
,
const
T
*
y_grad
,
const
int
pre
,
const
int
axis_n
,
const
int
post
,
T
*
x_grad
)
{
typedef
cub
::
BlockReduce
<
T
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage_sum
;
int
num
=
pre
*
post
;
for
(
int
i
=
blockIdx
.
x
;
i
<
num
;
i
+=
gridDim
.
x
)
{
T
sum
=
0.0
;
__shared__
T
row_sum
;
__shared__
T
row_sqrt_norm
;
__shared__
T
row_norm
;
auto
base
=
(
i
/
post
)
*
post
*
axis_n
+
(
i
%
post
);
for
(
int
j
=
threadIdx
.
x
;
j
<
axis_n
;
j
+=
blockDim
.
x
)
{
int
index
=
base
+
j
*
post
;
sum
+=
x
[
index
]
*
y_grad
[
index
];
}
T
reduce_result
=
BlockReduce
(
temp_storage_sum
).
Sum
(
sum
);
if
(
threadIdx
.
x
==
0
)
{
row_sum
=
reduce_result
;
row_sqrt_norm
=
x_norm
[
i
];
row_norm
=
row_sqrt_norm
*
row_sqrt_norm
;
}
__syncthreads
();
for
(
int
j
=
threadIdx
.
x
;
j
<
axis_n
;
j
+=
blockDim
.
x
)
{
int
index
=
base
+
j
*
post
;
const
T
x_ij
=
x
[
index
];
const
T
dy_ij
=
y_grad
[
index
];
x_grad
[
index
]
=
(
dy_ij
-
x_ij
*
row_sum
/
row_norm
)
/
row_sqrt_norm
;
}
}
}
template
<
typename
DeviceContext
,
typename
T
,
typename
AttrType
=
T
>
class
NormGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in_norm
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Norm"
);
auto
*
in_dy
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out_dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
T
*
dx
=
out_dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
x
=
in_x
->
data
<
T
>
();
const
T
*
x_norm
=
in_norm
->
data
<
T
>
();
const
T
*
dy
=
in_dy
->
data
<
T
>
();
auto
xdim
=
in_x
->
dims
();
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
int
pre
,
n
,
post
;
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
);
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
const
int
block
=
512
;
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
const
int
max_blocks
=
std
::
max
(
max_threads
/
block
,
1
);
int
grid
=
std
::
min
(
max_blocks
,
pre
*
post
);
NormalizeGradient
<
T
,
block
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
x
,
x_norm
,
dy
,
pre
,
n
,
post
,
dx
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
using
CUDA
=
paddle
::
platform
::
CUDADeviceContext
;
REGISTER_OP_CUDA_KERNEL
(
norm
,
ops
::
NormKernel
<
CUDA
,
float
>
,
ops
::
NormKernel
<
CUDA
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
norm_grad
,
ops
::
NormGradKernel
<
CUDA
,
float
>
,
ops
::
NormGradKernel
<
CUDA
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
norm
,
ops
::
Norm
CUDA
Kernel
<
CUDA
,
float
>
,
ops
::
Norm
CUDA
Kernel
<
CUDA
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
norm_grad
,
ops
::
NormGrad
CUDA
Kernel
<
CUDA
,
float
>
,
ops
::
NormGrad
CUDA
Kernel
<
CUDA
,
double
>
);
paddle/fluid/operators/norm_op.h
浏览文件 @
a39eba77
...
...
@@ -65,14 +65,17 @@ class NormKernel : public framework::OpKernel<T> {
Eigen
::
DSizes
<
int
,
1
>
rdim
(
1
);
// y = x / sqrt((sum(x * x) + epsilon))
// norm = sqrt(sum(x * x) + epsilon)
auto
sum
=
x
.
pow
(
2
).
sum
(
rdim
)
+
eps
;
auto
x2
=
x
*
x
;
auto
sum
=
x2
.
sum
(
rdim
)
+
eps
;
norm
.
device
(
*
place
)
=
sum
.
sqrt
();
// y = x / norm
Eigen
::
DSizes
<
int
,
3
>
rshape
(
pre
,
1
,
post
);
Eigen
::
DSizes
<
int
,
3
>
bcast
(
1
,
n
,
1
);
y
.
device
(
*
place
)
=
x
/
norm
.
reshape
(
rshape
).
broadcast
(
bcast
);
}
};
template
<
typename
DeviceContext
,
typename
T
,
typename
AttrType
=
T
>
class
NormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
python/paddle/fluid/tests/unittests/test_norm_op.py
浏览文件 @
a39eba77
...
...
@@ -63,5 +63,27 @@ class TestNormOp3(TestNormOp):
self
.
epsilon
=
1e-8
class
TestNormOp4
(
TestNormOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
128
,
1024
,
14
,
14
]
self
.
axis
=
2
self
.
epsilon
=
1e-8
def
test_check_grad
(
self
):
# since the gradient check is very slow in large shape, so skip check_grad
pass
class
TestNormOp5
(
TestNormOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
2048
,
2048
]
self
.
axis
=
1
self
.
epsilon
=
1e-8
def
test_check_grad
(
self
):
# since the gradient check is very slow in large shape, so skip check_grad
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录