Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a32ce8c4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
a32ce8c4
编写于
8月 15, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into port_pybind11
上级
507f4797
5d2834fc
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
736 addition
and
7 deletion
+736
-7
doc/fluid/new_docs/advanced_usage/deploy/native_infer.rst
doc/fluid/new_docs/advanced_usage/deploy/native_infer.rst
+3
-3
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+3
-0
paddle/fluid/framework/ir/graph_pattern_detecter.cc
paddle/fluid/framework/ir/graph_pattern_detecter.cc
+186
-0
paddle/fluid/framework/ir/graph_pattern_detecter.h
paddle/fluid/framework/ir/graph_pattern_detecter.h
+181
-0
paddle/fluid/framework/ir/graph_pattern_detecter_tester.cc
paddle/fluid/framework/ir/graph_pattern_detecter_tester.cc
+172
-0
paddle/fluid/framework/ir/graph_traits.cc
paddle/fluid/framework/ir/graph_traits.cc
+69
-0
paddle/fluid/framework/ir/graph_traits.h
paddle/fluid/framework/ir/graph_traits.h
+90
-0
paddle/fluid/framework/ir/node.h
paddle/fluid/framework/ir/node.h
+3
-0
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+22
-3
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+7
-1
未找到文件。
doc/fluid/new_docs/advanced_usage/deploy/native_infer.rst
浏览文件 @
a32ce8c4
...
@@ -4,7 +4,7 @@ Paddle 预测 API
...
@@ -4,7 +4,7 @@ Paddle 预测 API
为了更简单方便的预测部署,Fluid 提供了一套高层 API
为了更简单方便的预测部署,Fluid 提供了一套高层 API
用来隐藏底层不同的优化实现。
用来隐藏底层不同的优化实现。
`预测库相关代码 <https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
contrib/inference
>`__
`预测库相关代码 <https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
fluid/inference/api
>`__
包括
包括
- 头文件 ``paddle_inference_api.h`` 定义了所有的接口
- 头文件 ``paddle_inference_api.h`` 定义了所有的接口
...
@@ -104,5 +104,5 @@ engine
...
@@ -104,5 +104,5 @@ engine
------------
------------
- `inference
- `inference
demos <https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
contrib/inference/demo
>`__
demos <https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
fluid/inference/api/demo_ci
>`__
- `复杂单线程/多线程例子 <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/
contrib/inference/test_paddle_inference_api_impl
.cc>`__
- `复杂单线程/多线程例子 <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/
fluid/inference/api/api_impl_tester
.cc>`__
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
a32ce8c4
...
@@ -3,7 +3,10 @@ cc_library(graph SRCS graph.cc DEPS node)
...
@@ -3,7 +3,10 @@ cc_library(graph SRCS graph.cc DEPS node)
cc_library
(
graph_helper SRCS graph_helper.cc DEPS graph
)
cc_library
(
graph_helper SRCS graph_helper.cc DEPS graph
)
cc_library
(
pass SRCS pass.cc DEPS graph node graph_helper
)
cc_library
(
pass SRCS pass.cc DEPS graph node graph_helper
)
cc_library
(
graph_viz_pass SRCS graph_viz_pass.cc DEPS graph pass graph_helper
)
cc_library
(
graph_viz_pass SRCS graph_viz_pass.cc DEPS graph pass graph_helper
)
cc_library
(
graph_traits SRCS graph_traits.cc DEPS graph
)
cc_library
(
graph_pattern_detecter SRCS graph_pattern_detecter.cc DEPS graph graph_helper graph_traits
)
cc_test
(
pass_test SRCS pass_test.cc DEPS graph pass graph_helper
)
cc_test
(
pass_test SRCS pass_test.cc DEPS graph pass graph_helper
)
cc_test
(
graph_test SRCS graph_test.cc DEPS graph graph_helper op_registry
)
cc_test
(
graph_test SRCS graph_test.cc DEPS graph graph_helper op_registry
)
cc_test
(
graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_registry
)
cc_test
(
graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_registry
)
cc_test
(
test_graph_pattern_detecter SRCS graph_pattern_detecter_tester.cc DEPS graph_pattern_detecter
)
paddle/fluid/framework/ir/graph_pattern_detecter.cc
0 → 100644
浏览文件 @
a32ce8c4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detecter.h"
#include "paddle/fluid/framework/ir/graph_traits.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
PDNode
*
PDPattern
::
NewNode
(
PDNode
::
teller_t
&&
teller
,
const
std
::
string
&
name
)
{
nodes_
.
emplace_back
(
new
PDNode
(
std
::
move
(
teller
),
name
));
auto
*
cur
=
nodes_
.
back
().
get
();
return
cur
;
}
void
PDPattern
::
AddEdge
(
PDNode
*
a
,
PDNode
*
b
)
{
PADDLE_ENFORCE
(
a
);
PADDLE_ENFORCE
(
b
);
PADDLE_ENFORCE
(
a
!=
b
,
"can't connect to the same nodes."
);
edges_
.
emplace_back
(
a
,
b
);
}
void
GraphPatternDetecter
::
operator
()(
Graph
*
graph
,
GraphPatternDetecter
::
handle_t
handler
)
{
if
(
!
MarkPDNodesInGraph
(
*
graph
))
return
;
auto
subgraphs
=
DetectPatterns
();
UniquePatterns
(
&
subgraphs
);
RemoveOverlappedMatch
(
&
subgraphs
);
for
(
auto
&
g
:
subgraphs
)
{
handler
(
g
,
graph
);
}
}
bool
GraphPatternDetecter
::
MarkPDNodesInGraph
(
const
ir
::
Graph
&
graph
)
{
if
(
graph
.
Nodes
().
empty
())
return
false
;
for
(
auto
&
node
:
GraphTraits
::
DFS
(
graph
))
{
for
(
const
auto
&
pdnode
:
pattern_
.
nodes
())
{
if
(
pdnode
->
Tell
(
&
node
))
{
pdnodes2nodes_
[
pdnode
.
get
()].
insert
(
&
node
);
}
}
}
return
!
pdnodes2nodes_
.
empty
();
}
struct
HitGroup
{
std
::
unordered_map
<
PDNode
*
,
Node
*>
roles
;
bool
Match
(
Node
*
node
,
PDNode
*
pat
)
{
return
!
roles
.
count
(
pat
)
||
roles
.
at
(
pat
)
==
node
;
}
void
Register
(
Node
*
node
,
PDNode
*
pat
)
{
roles
[
pat
]
=
node
;
}
};
// Tell whether Node a links to b.
bool
IsNodesLink
(
Node
*
a
,
Node
*
b
)
{
for
(
auto
*
node
:
a
->
outputs
)
{
if
(
b
==
node
)
{
return
true
;
}
}
return
false
;
}
std
::
vector
<
GraphPatternDetecter
::
subgraph_t
>
GraphPatternDetecter
::
DetectPatterns
()
{
// Init empty subgraphs.
std
::
vector
<
GraphPatternDetecter
::
subgraph_t
>
result
;
std
::
vector
<
HitGroup
>
init_groups
;
PADDLE_ENFORCE
(
!
pattern_
.
edges
().
empty
(),
"At least one edge is needed"
);
auto
*
first_pnode
=
pattern_
.
edges
().
front
().
first
;
if
(
!
pdnodes2nodes_
.
count
(
first_pnode
))
return
result
;
for
(
auto
*
node
:
pdnodes2nodes_
[
first_pnode
])
{
HitGroup
group
;
group
.
roles
[
first_pnode
]
=
node
;
init_groups
.
emplace_back
(
group
);
}
int
step
=
0
;
std
::
array
<
std
::
vector
<
HitGroup
>
,
2
>
bi_records
;
bi_records
[
0
]
=
std
::
move
(
init_groups
);
// Extend a PDNode to subgraphs by deducing the connection relations defined
// in edges of PDNodes.
for
(
const
auto
&
edge
:
pattern_
.
edges
())
{
// Each role has two PDNodes, which indicates two roles.
// Detect two Nodes that can match these two roles and they are connected.
auto
&
pre_groups
=
bi_records
[
step
%
2
];
auto
&
cur_groups
=
bi_records
[
1
-
(
step
++
%
2
)];
cur_groups
.
clear
();
// source -> target
for
(
Node
*
source
:
pdnodes2nodes_
[
edge
.
first
])
{
for
(
Node
*
target
:
pdnodes2nodes_
[
edge
.
second
])
{
// TODO(Superjomn) add some prune strategies.
for
(
const
auto
&
group
:
pre_groups
)
{
HitGroup
new_group
=
group
;
if
(
IsNodesLink
(
source
,
target
)
&&
new_group
.
Match
(
source
,
edge
.
first
))
{
new_group
.
Register
(
source
,
edge
.
first
);
if
(
new_group
.
Match
(
target
,
edge
.
second
))
{
new_group
.
Register
(
target
,
edge
.
second
);
cur_groups
.
push_back
(
new_group
);
// TODO(Superjomn) need to unique
}
}
}
}
}
}
for
(
auto
&
group
:
bi_records
[
step
%
2
])
{
GraphPatternDetecter
::
subgraph_t
subgraph
;
for
(
auto
&
role
:
group
.
roles
)
{
subgraph
.
emplace
(
role
.
first
,
role
.
second
);
}
result
.
emplace_back
(
subgraph
);
}
return
result
;
}
void
GraphPatternDetecter
::
UniquePatterns
(
std
::
vector
<
GraphPatternDetecter
::
subgraph_t
>*
subgraphs
)
{
if
(
subgraphs
->
empty
())
return
;
std
::
vector
<
GraphPatternDetecter
::
subgraph_t
>
result
;
std
::
unordered_set
<
size_t
>
set
;
for
(
auto
&
g
:
*
subgraphs
)
{
size_t
key
=
0
;
for
(
auto
&
item
:
g
)
{
key
^=
std
::
hash
<
void
*>
{}(
item
.
first
);
key
^=
std
::
hash
<
void
*>
{}(
item
.
second
);
}
if
(
!
set
.
count
(
key
))
{
result
.
emplace_back
(
g
);
set
.
insert
(
key
);
}
}
*
subgraphs
=
result
;
}
void
GraphPatternDetecter
::
RemoveOverlappedMatch
(
std
::
vector
<
subgraph_t
>*
subgraphs
)
{
std
::
vector
<
subgraph_t
>
result
;
std
::
unordered_set
<
Node
*>
node_set
;
for
(
const
auto
&
subgraph
:
*
subgraphs
)
{
bool
valid
=
true
;
for
(
auto
&
item
:
subgraph
)
{
if
(
node_set
.
count
(
item
.
second
))
{
valid
=
false
;
break
;
}
}
if
(
valid
)
{
for
(
auto
&
item
:
subgraph
)
{
node_set
.
insert
(
item
.
second
);
}
result
.
push_back
(
subgraph
);
}
}
*
subgraphs
=
result
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_pattern_detecter.h
0 → 100644
浏览文件 @
a32ce8c4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest_prod.h>
#endif
#include <numeric>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
// Some basic torminolygies:
// - PDPattern: a pattern defined as a data flow graph.
// - PDNode: the node in the pattern, each PDNode represents an `ir::Node`
// that meets some conditions defined in `PDNode.teller`.
// - A pattern is defined with PDNodes with edges.
// Pattern detector node. This node helps to build a pattern.
struct
PDNode
{
// tell whether an ir::Node* is a candidation for a PDNode.
using
teller_t
=
std
::
function
<
bool
(
Node
*
)
>
;
PDNode
(
teller_t
&&
teller
,
const
std
::
string
&
name
=
""
)
:
teller_
(
teller
),
name_
(
name
)
{
PADDLE_ENFORCE
(
teller_
!=
nullptr
,
"invalid teller functer is set."
);
}
PDNode
(
PDNode
&&
other
)
=
default
;
std
::
vector
<
PDNode
*>
inlinks
;
std
::
vector
<
PDNode
*>
outlinks
;
bool
Tell
(
Node
*
node
)
const
{
PADDLE_ENFORCE
(
teller_
!=
nullptr
,
"teller should be set for a PDNode"
);
return
teller_
(
node
);
}
const
std
::
string
&
name
()
const
{
return
name_
;
}
PDNode
(
const
PDNode
&
)
=
delete
;
PDNode
&
operator
=
(
const
PDNode
&
)
=
delete
;
private:
teller_t
teller_
;
std
::
string
name_
;
};
/*
* A pattern in a graph, which defined with PDNode and edges. Most graph
* patterns can be divided into PDNodes and link relations between them.
*
* For example, the FC fusion need to filter the MUL and ELEMENTWISE_ADD
* operators from the computation graph, the MUL's output should have only one
* consumer which is the ELEMENTWISE_ADD.
* This pattern can be defined as with the following pseudo codes
*
* // Create two operator PDNodes.
* MUL = PDPattern.NewNode()
* ELE = PDPattern.NewNode()
* // Create the variable PDNodes.
* MUL_out = PDPattern.NewNode()
* // Add teller to define some rules that help to filter the target Nodes.
* MUL.teller = lambda(node): node->IsOp() && node->Op()->Type == "mul";
* ELE.teller = lambda(node): \
* node->IsOp() && node->Op()->Type == "elementwise_add";
* MUL_out.teller = lambda(node): node->IsVar() && (MUL in node->inputs)
* && (ELE in node->outputs)
*
* One can add more specific tellers for PDNodes or edges, both the Operator
* and Variable Nodes can be ruled in PDNode.teller.
*
* PDPattern can record the general patterns, such as the pattern represents
* - Op in CPU -> Op in GPU -> Op in CPU, to findout the IO abnormal place.
* - Ops whose inputs and outputs share the same variables
*/
class
PDPattern
{
public:
using
edge_t
=
std
::
pair
<
PDNode
*
,
PDNode
*>
;
void
AddEdge
(
PDNode
*
a
,
PDNode
*
b
);
PDNode
*
NewNode
(
PDNode
::
teller_t
&&
teller
,
const
std
::
string
&
name
=
""
);
const
std
::
vector
<
std
::
unique_ptr
<
PDNode
>>&
nodes
()
const
{
return
nodes_
;
}
const
std
::
vector
<
edge_t
>&
edges
()
const
{
return
edges_
;
}
private:
#ifdef PADDLE_WITH_TESTING
FRIEND_TEST
(
PDPattern
,
AddEdge
);
FRIEND_TEST
(
PDPattern
,
NewNode
);
#endif
std
::
vector
<
std
::
unique_ptr
<
PDNode
>>
nodes_
;
std
::
vector
<
edge_t
>
edges_
;
};
/*
* GraphPatternDetecter helps to detect the specific patterns in the graph.
* Input a pattern, output a list of the matched subgraphs/nodes.
* This helper can be used to support fuse(conv+batchnorm => batchnorm e.g.).
*
* The algorithm has three phases:
* 1. Mark the nodes that match the defined PDNodes in a PDPattern,
* 2. Extend a PDNode to subgraphs by deducing the connection relation defined
* in PAPattern(the edges),
* 3. Get the filtered subgraphs and treat them with a pre-defined handler.
*
* Usage:
* // Create a detector
* GraphPatternDetecter detector;
* // Define the detector's pattern, by adding PDNode and define the edges.
* auto* node0 = detector.mutable_pattern().AddNode(...)
* auto* node1 = detector.mutable_pattern().AddNode(...)
* node0->teller = some lambda.
* node1->teller = some lambda.
* detector.mutable_pattern().AddEdge(node0, node1);
* // Create an handler, to define the behavior of treating the filtered
* // subgraphs that comply with the patterns.
* GraphPatternDetecter::handle_t handler = some labmda
* // Execute the detector.
* detector(&graph, handler);
*/
class
GraphPatternDetecter
{
public:
using
subgraph_t
=
std
::
unordered_map
<
PDNode
*
,
Node
*>
;
// Operate on the detected pattern.
using
handle_t
=
std
::
function
<
void
(
const
subgraph_t
&
/*hitted pattern*/
,
Graph
*
)
>
;
void
operator
()(
Graph
*
graph
,
handle_t
handler
);
const
PDPattern
&
pattern
()
const
{
return
pattern_
;
}
PDPattern
*
mutable_pattern
()
{
return
&
pattern_
;
}
private:
// Mark the nodes that fits the pattern.
bool
MarkPDNodesInGraph
(
const
ir
::
Graph
&
graph
);
// Detect all the pattern and output the hit records.
std
::
vector
<
subgraph_t
>
DetectPatterns
();
// Remove duplicate patterns.
void
UniquePatterns
(
std
::
vector
<
subgraph_t
>*
subgraphs
);
// Remove overlapped match subgraphs, when overlapped, keep the previous one.
void
RemoveOverlappedMatch
(
std
::
vector
<
subgraph_t
>*
subgraphs
);
#ifdef PADDLE_WITH_TESTING
FRIEND_TEST
(
GraphPatternDetecter
,
MarkPDNodesInGraph
);
FRIEND_TEST
(
GraphPatternDetecter
,
DetectPatterns
);
#endif
private:
using
hit_rcd_t
=
std
::
pair
<
Node
*
/*node in graph*/
,
PDNode
*
/*node in pattern*/
>
;
PDPattern
pattern_
;
std
::
vector
<
hit_rcd_t
>
marked_records_
;
std
::
unordered_map
<
const
PDNode
*
,
std
::
unordered_set
<
Node
*>>
pdnodes2nodes_
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_pattern_detecter_tester.cc
0 → 100644
浏览文件 @
a32ce8c4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/graph_pattern_detecter.h"
#include <gtest/gtest.h>
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
BuildGraph
(
Graph
*
g
)
{
ir
::
Node
*
o1
=
g
->
CreateEmptyNode
(
"op1"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o2
=
g
->
CreateEmptyNode
(
"op2"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o3
=
g
->
CreateEmptyNode
(
"op3"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o4
=
g
->
CreateEmptyNode
(
"op4"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
o5
=
g
->
CreateEmptyNode
(
"op5"
,
Node
::
Type
::
kOperation
);
ir
::
Node
*
v1
=
g
->
CreateEmptyNode
(
"var1"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v2
=
g
->
CreateEmptyNode
(
"var2"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v3
=
g
->
CreateEmptyNode
(
"var3"
,
Node
::
Type
::
kVariable
);
ir
::
Node
*
v4
=
g
->
CreateEmptyNode
(
"var4"
,
Node
::
Type
::
kVariable
);
// o1->v1->o2
o1
->
outputs
.
push_back
(
v1
);
o2
->
inputs
.
push_back
(
v1
);
v1
->
inputs
.
push_back
(
o1
);
v1
->
outputs
.
push_back
(
o2
);
// o2->v2->o3
// o2->v2->o4
o2
->
outputs
.
push_back
(
v2
);
o3
->
inputs
.
push_back
(
v2
);
o4
->
inputs
.
push_back
(
v2
);
v2
->
inputs
.
push_back
(
o2
);
v2
->
outputs
.
push_back
(
o3
);
v2
->
outputs
.
push_back
(
o4
);
// o2->v3->o5
o2
->
outputs
.
push_back
(
v3
);
o5
->
inputs
.
push_back
(
v3
);
v3
->
inputs
.
push_back
(
o2
);
v3
->
outputs
.
push_back
(
o5
);
// o3-v4->o5
o3
->
outputs
.
push_back
(
v4
);
o5
->
inputs
.
push_back
(
v4
);
v4
->
inputs
.
push_back
(
o3
);
v4
->
outputs
.
push_back
(
o5
);
}
TEST
(
PDPattern
,
NewNode
)
{
PDPattern
x
;
auto
*
n
=
x
.
NewNode
([](
Node
*
x
)
{
return
true
;
});
ASSERT_TRUE
(
n
);
ASSERT_EQ
(
x
.
nodes_
.
size
(),
1UL
);
}
TEST
(
PDPattern
,
AddEdge
)
{
PDPattern
x
;
auto
*
a
=
x
.
NewNode
([](
Node
*
x
)
{
return
true
;
});
auto
*
b
=
x
.
NewNode
([](
Node
*
x
)
{
return
true
;
});
ASSERT_TRUE
(
a
);
ASSERT_TRUE
(
b
);
x
.
AddEdge
(
a
,
b
);
ASSERT_EQ
(
x
.
nodes_
.
size
(),
2UL
);
ASSERT_EQ
(
x
.
edges_
.
size
(),
1UL
);
ASSERT_EQ
(
x
.
edges_
.
front
().
first
,
a
);
ASSERT_EQ
(
x
.
edges_
.
front
().
second
,
b
);
ASSERT_EQ
(
x
.
nodes
().
size
(),
2UL
);
ASSERT_EQ
(
x
.
edges
().
size
(),
1UL
);
ASSERT_EQ
(
x
.
edges
().
front
().
first
,
a
);
ASSERT_EQ
(
x
.
edges
().
front
().
second
,
b
);
}
TEST
(
GraphPatternDetecter
,
MarkPDNodesInGraph
)
{
GraphPatternDetecter
x
;
// mark o2, o3, v2
// The pattern is a graph:
// o2(a node named o2) -> v2(a node named v2)
// v2 -> o3(a node named o3)
auto
*
o2
=
x
.
pattern_
.
NewNode
([](
Node
*
node
)
{
// The teller can be any condition, such as op type, or variable's shape.
return
node
&&
node
->
Name
()
==
"op2"
&&
node
->
IsOp
();
});
auto
*
o3
=
x
.
pattern_
.
NewNode
([](
Node
*
node
)
{
// The teller can be any condition, such as op type, or variable's shape.
return
node
&&
node
->
Name
()
==
"op3"
&&
node
->
IsOp
();
});
auto
*
v2
=
x
.
pattern_
.
NewNode
([](
Node
*
node
)
{
// The teller can be any condition, such as op type, or variable's shape.
return
node
&&
node
->
Name
()
==
"var2"
&&
node
->
IsVar
();
});
ASSERT_FALSE
(
o2
->
Tell
(
nullptr
));
ASSERT_FALSE
(
o3
->
Tell
(
nullptr
));
ASSERT_FALSE
(
v2
->
Tell
(
nullptr
));
x
.
pattern_
.
AddEdge
(
o2
,
v2
);
x
.
pattern_
.
AddEdge
(
v2
,
o3
);
ASSERT_EQ
(
x
.
pattern_
.
edges
().
size
(),
2UL
);
ASSERT_EQ
(
x
.
pattern_
.
edges
()[
0
].
first
,
o2
);
ASSERT_EQ
(
x
.
pattern_
.
edges
()[
0
].
second
,
v2
);
ASSERT_EQ
(
x
.
pattern_
.
edges
()[
1
].
first
,
v2
);
ASSERT_EQ
(
x
.
pattern_
.
edges
()[
1
].
second
,
o3
);
ProgramDesc
program
;
Graph
graph
(
program
);
BuildGraph
(
&
graph
);
x
.
MarkPDNodesInGraph
(
graph
);
ASSERT_EQ
(
x
.
pdnodes2nodes_
.
size
(),
3UL
);
auto
subgraphs
=
x
.
DetectPatterns
();
ASSERT_EQ
(
subgraphs
.
size
(),
1UL
);
}
TEST
(
GraphPatternDetecter
,
MultiSubgraph
)
{
ProgramDesc
program
;
Graph
graph
(
program
);
BuildGraph
(
&
graph
);
GraphPatternDetecter
x
;
// The pattern is a graph:
// op -> var
auto
*
any_op
=
x
.
mutable_pattern
()
->
NewNode
(
[](
Node
*
node
)
{
return
node
->
IsOp
()
&&
(
node
->
Name
()
==
"op2"
||
node
->
Name
()
==
"op3"
);
},
"OP0"
);
auto
*
any_var
=
x
.
mutable_pattern
()
->
NewNode
(
[](
Node
*
node
)
{
return
node
->
IsVar
();
},
"VAR"
);
auto
*
any_op1
=
x
.
mutable_pattern
()
->
NewNode
(
[](
Node
*
node
)
{
return
node
->
IsOp
();
},
"OP1"
);
x
.
mutable_pattern
()
->
AddEdge
(
any_op
,
any_var
);
x
.
mutable_pattern
()
->
AddEdge
(
any_var
,
any_op1
);
int
count
=
0
;
GraphPatternDetecter
::
handle_t
handle
=
[
&
](
const
GraphPatternDetecter
::
subgraph_t
&
s
,
Graph
*
g
)
{
LOG
(
INFO
)
<<
"Detect "
<<
s
.
at
(
any_op
)
->
Name
()
<<
" -> "
<<
s
.
at
(
any_var
)
->
Name
()
<<
" -> "
<<
s
.
at
(
any_op1
)
->
Name
();
count
++
;
};
x
(
&
graph
,
handle
);
// 1. Detect op3 -> var4 -> op5
// 2. Detect op2 -> var2 -> op3
// 3. Detect op2 -> var2 -> op4
// 4. Detect op2 -> var3 -> op5
// But 2 and 3 and 4 overlapped, so keep 2, so the final choices are 1 and 2
ASSERT_GE
(
count
,
1UL
);
ASSERT_LE
(
count
,
2UL
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_traits.cc
0 → 100644
浏览文件 @
a32ce8c4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/graph_traits.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
//
// NodesDFSIterator
//
NodesDFSIterator
::
NodesDFSIterator
(
const
std
::
vector
<
Node
*>
&
source
)
{
for
(
auto
*
x
:
source
)
stack_
.
push
(
x
);
}
NodesDFSIterator
::
NodesDFSIterator
(
NodesDFSIterator
&&
other
)
noexcept
:
stack_
(
std
::
move
(
other
.
stack_
)),
visited_
(
std
::
move
(
other
.
visited_
))
{}
NodesDFSIterator
::
NodesDFSIterator
(
const
NodesDFSIterator
&
other
)
:
stack_
(
other
.
stack_
),
visited_
(
other
.
visited_
)
{}
Node
&
NodesDFSIterator
::
operator
*
()
{
PADDLE_ENFORCE
(
!
stack_
.
empty
());
return
*
stack_
.
top
();
}
NodesDFSIterator
&
NodesDFSIterator
::
operator
++
()
{
PADDLE_ENFORCE
(
!
stack_
.
empty
(),
"the iterator exceeds range"
);
visited_
.
insert
(
stack_
.
top
());
auto
*
cur
=
stack_
.
top
();
stack_
.
pop
();
for
(
auto
*
x
:
cur
->
outputs
)
{
if
(
!
visited_
.
count
(
x
))
{
stack_
.
push
(
x
);
}
}
return
*
this
;
}
bool
NodesDFSIterator
::
operator
==
(
const
NodesDFSIterator
&
other
)
{
if
(
stack_
.
empty
())
return
other
.
stack_
.
empty
();
if
((
!
stack_
.
empty
())
&&
(
!
other
.
stack_
.
empty
()))
{
return
stack_
.
top
()
==
other
.
stack_
.
top
();
}
return
false
;
}
NodesDFSIterator
&
NodesDFSIterator
::
operator
=
(
const
NodesDFSIterator
&
other
)
{
stack_
=
other
.
stack_
;
visited_
=
other
.
visited_
;
return
*
this
;
}
Node
*
NodesDFSIterator
::
operator
->
()
{
return
stack_
.
top
();
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_traits.h
0 → 100644
浏览文件 @
a32ce8c4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stack>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
template
<
typename
IteratorT
>
class
iterator_range
{
IteratorT
begin_
,
end_
;
public:
template
<
typename
Container
>
explicit
iterator_range
(
Container
&&
c
)
:
begin_
(
c
.
begin
()),
end_
(
c
.
end
())
{}
iterator_range
(
const
IteratorT
&
begin
,
const
IteratorT
&
end
)
:
begin_
(
begin
),
end_
(
end
)
{}
const
IteratorT
&
begin
()
const
{
return
begin_
;
}
const
IteratorT
&
end
()
const
{
return
end_
;
}
};
// DFS iterator on nodes.
struct
NodesDFSIterator
:
public
std
::
iterator
<
std
::
forward_iterator_tag
,
Node
*>
{
NodesDFSIterator
()
=
default
;
explicit
NodesDFSIterator
(
const
std
::
vector
<
Node
*>
&
source
);
NodesDFSIterator
(
NodesDFSIterator
&&
other
)
noexcept
;
NodesDFSIterator
(
const
NodesDFSIterator
&
other
);
Node
&
operator
*
();
NodesDFSIterator
&
operator
++
();
// TODO(Superjomn) current implementation just compare the first
// element, need to compare the graph and all the elements in the queue and
// set.
NodesDFSIterator
&
operator
=
(
const
NodesDFSIterator
&
other
);
bool
operator
==
(
const
NodesDFSIterator
&
other
);
bool
operator
!=
(
const
NodesDFSIterator
&
other
)
{
return
!
(
*
this
==
other
);
}
Node
*
operator
->
();
private:
std
::
stack
<
Node
*>
stack_
;
std
::
unordered_set
<
Node
*>
visited_
;
};
/*
* GraphTraits contains some graph traversal algorithms.
*
* Usage:
*
*/
struct
GraphTraits
{
static
iterator_range
<
NodesDFSIterator
>
DFS
(
const
Graph
&
g
)
{
auto
start_points
=
ExtractStartPoints
(
g
);
NodesDFSIterator
x
(
start_points
);
return
iterator_range
<
NodesDFSIterator
>
(
NodesDFSIterator
(
start_points
),
NodesDFSIterator
());
}
private:
// The nodes those have no input will be treated as start points.
static
std
::
vector
<
Node
*>
ExtractStartPoints
(
const
Graph
&
g
)
{
std
::
vector
<
Node
*>
result
;
for
(
auto
*
node
:
g
.
Nodes
())
{
if
(
node
->
inputs
.
empty
())
{
result
.
push_back
(
node
);
}
}
return
result
;
}
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/node.h
浏览文件 @
a32ce8c4
...
@@ -58,6 +58,9 @@ class Node {
...
@@ -58,6 +58,9 @@ class Node {
return
op_desc_
;
return
op_desc_
;
}
}
bool
IsOp
()
const
{
return
type_
==
Type
::
kOperation
;
}
bool
IsVar
()
const
{
return
type_
==
Type
::
kVariable
;
}
std
::
vector
<
Node
*>
inputs
;
std
::
vector
<
Node
*>
inputs
;
std
::
vector
<
Node
*>
outputs
;
std
::
vector
<
Node
*>
outputs
;
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
a32ce8c4
...
@@ -12,6 +12,8 @@
...
@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
math
import
unittest
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.transpiler.distribute_transpiler
import
delete_ops
from
paddle.fluid.transpiler.distribute_transpiler
import
delete_ops
...
@@ -363,12 +365,13 @@ class TestL2DecayWithPiecewise(TranspilerTest):
...
@@ -363,12 +365,13 @@ class TestL2DecayWithPiecewise(TranspilerTest):
class
TestDistLookupTableBase
(
TranspilerTest
):
class
TestDistLookupTableBase
(
TranspilerTest
):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
):
self
.
table_size
=
1000
self
.
emb_size
=
64
def
emb_pool
(
ids
):
def
emb_pool
(
ids
):
table_size
=
1000
emb_size
=
64
emb
=
fluid
.
layers
.
embedding
(
emb
=
fluid
.
layers
.
embedding
(
input
=
ids
,
input
=
ids
,
size
=
[
table_size
,
emb_size
],
size
=
[
self
.
table_size
,
self
.
emb_size
],
dtype
=
'float32'
,
dtype
=
'float32'
,
param_attr
=
'shared_w'
,
# share parameter
param_attr
=
'shared_w'
,
# share parameter
is_sparse
=
is_sparse
,
is_sparse
=
is_sparse
,
...
@@ -537,6 +540,22 @@ class TestAsyncDistLookupTable(TestDistLookupTableBase):
...
@@ -537,6 +540,22 @@ class TestAsyncDistLookupTable(TestDistLookupTableBase):
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
class
TestDistLookupTableSliceSize
(
TestDistLookupTableBase
):
def
net_conf
(
self
):
self
.
network_with_table
(
is_sparse
=
True
,
is_distributed
=
True
)
def
transpiler_test_impl
(
self
):
config
=
fluid
.
DistributeTranspilerConfig
()
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
)
self
.
assertTrue
(
self
.
transpiler
.
has_distributed_lookup_table
)
lookup_table_var
=
pserver1
.
global_block
().
vars
[
self
.
transpiler
.
table_name
]
row_size
=
lookup_table_var
.
shape
[
0
]
calc_row_size
=
int
(
math
.
ceil
(
self
.
table_size
/
self
.
pservers
))
self
.
assertEqual
(
row_size
,
calc_row_size
)
class
TestRMSPropOptimizer
(
TranspilerTest
):
class
TestRMSPropOptimizer
(
TranspilerTest
):
def
net_conf
(
self
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
a32ce8c4
...
@@ -887,9 +887,15 @@ class DistributeTranspiler(object):
...
@@ -887,9 +887,15 @@ class DistributeTranspiler(object):
# create table param and grad var in pserver program
# create table param and grad var in pserver program
origin_param_var
=
self
.
origin_program
.
global_block
().
vars
[
origin_param_var
=
self
.
origin_program
.
global_block
().
vars
[
self
.
table_name
]
self
.
table_name
]
zero_dim
=
int
(
math
.
ceil
(
origin_param_var
.
shape
[
0
]
/
len
(
self
.
pserver_endpoints
)))
table_shape
=
list
(
origin_param_var
.
shape
)
table_shape
[
0
]
=
zero_dim
param_var
=
pserver_program
.
global_block
().
create_var
(
param_var
=
pserver_program
.
global_block
().
create_var
(
name
=
origin_param_var
.
name
,
name
=
origin_param_var
.
name
,
shape
=
origin_param_var
.
shape
,
shape
=
table_
shape
,
dtype
=
origin_param_var
.
dtype
,
dtype
=
origin_param_var
.
dtype
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
,
persistable
=
True
)
persistable
=
True
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录