Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a3123e21
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a3123e21
编写于
6月 08, 2017
作者:
C
Cao Ying
提交者:
GitHub
6月 08, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2412 from lcy-seso/add_config_helper_for_prelu
add configuration helper for prelu layer.
上级
f703b5b4
99661481
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
212 addition
and
82 deletion
+212
-82
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+14
-5
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+3
-3
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+151
-73
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
.../paddle/trainer_config_helpers/tests/configs/file_list.sh
+2
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr
..._helpers/tests/configs/protostr/test_prelu_layer.protostr
+36
-0
python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py
.../trainer_config_helpers/tests/configs/test_prelu_layer.py
+6
-0
未找到文件。
doc/api/v2/config/layer.rst
浏览文件 @
a3123e21
...
...
@@ -130,7 +130,7 @@ recurrent_group
---------------
.. autoclass:: paddle.v2.layer.recurrent_group
:noindex:
lstm_step
---------
.. autoclass:: paddle.v2.layer.lstm_step
...
...
@@ -145,12 +145,12 @@ beam_search
------------
.. autoclass:: paddle.v2.layer.beam_search
:noindex:
get_output
----------
.. autoclass:: paddle.v2.layer.get_output
:noindex:
Mixed Layer
===========
...
...
@@ -203,7 +203,7 @@ trans_full_matrix_projection
----------------------------
.. autoclass:: paddle.v2.layer.trans_full_matrix_projection
:noindex:
Aggregate Layers
================
...
...
@@ -434,10 +434,19 @@ smooth_l1_cost
.. autoclass:: paddle.v2.layer.smooth_l1_cost
:noindex:
Check Layer
Check Layer
============
eos
---
.. autoclass:: paddle.v2.layer.eos
:noindex:
Activation with learnable parameter
===================================
prelu
--------
.. autoclass:: paddle.v2.layer.prelu
:noindex:
python/paddle/trainer/config_parser.py
浏览文件 @
a3123e21
...
...
@@ -73,7 +73,6 @@ To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]
'''
import
copy
import
logging
import
os
...
...
@@ -1731,9 +1730,10 @@ class ParameterReluLayer(LayerBase):
def
__init__
(
self
,
name
,
inputs
,
partial_sum
=
1
,
**
args
):
super
(
ParameterReluLayer
,
self
).
__init__
(
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
args
)
config_assert
(
len
(
self
.
inputs
)
==
1
)
config_assert
(
self
.
input_layer
.
size
%
partial_sum
==
0
)
input_layer
=
self
.
get_input_layer
(
0
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
"prelu layer has only one input."
)
config_assert
(
input_layer
.
size
%
partial_sum
==
0
,
"a wrong setting for partial_sum"
)
self
.
set_layer_size
(
input_layer
.
size
)
self
.
create_input_parameter
(
0
,
input_layer
.
size
/
partial_sum
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
a3123e21
...
...
@@ -31,31 +31,31 @@ except ImportError:
import
copy
__all__
=
[
"full_matrix_projection"
,
"AggregateLevel"
,
"ExpandLevel"
,
"identity_projection"
,
"dotmul_projection"
,
"dotmul_operator"
,
"repeat_layer"
,
"seq_reshape_layer"
,
"table_projection"
,
"mixed_layer"
,
"data_layer"
,
"embedding_layer"
,
"fc_layer"
,
"grumemory"
,
"pooling_layer"
,
"lstmemory"
,
"last_seq"
,
"first_seq"
,
"cos_sim"
,
"hsigmoid"
,
"conv_projection"
,
"mse_cost"
,
"regression_cost"
,
'full_matrix_projection'
,
'AggregateLevel'
,
'ExpandLevel'
,
'identity_projection'
,
'dotmul_projection'
,
'dotmul_operator'
,
'repeat_layer'
,
'seq_reshape_layer'
,
'table_projection'
,
'mixed_layer'
,
'data_layer'
,
'embedding_layer'
,
'fc_layer'
,
'grumemory'
,
'pooling_layer'
,
'lstmemory'
,
'last_seq'
,
'first_seq'
,
'cos_sim'
,
'hsigmoid'
,
'conv_projection'
,
'mse_cost'
,
'regression_cost'
,
'classification_cost'
,
"LayerOutput"
,
'LayerOutput'
,
'img_conv_layer'
,
'img_pool_layer'
,
'batch_norm_layer'
,
...
...
@@ -121,6 +121,7 @@ __all__ = [
'smooth_l1_cost'
,
'layer_support'
,
'multiplex_layer'
,
'prelu_layer'
,
]
...
...
@@ -129,26 +130,26 @@ class LayerType(object):
Layer type enumerations.
"""
DATA
=
"data"
MIXED_LAYER
=
"mixed"
LSTMEMORY
=
"lstmemory"
GRUMEMORY
=
"gated_recurrent"
SEQUENCE_LAST_INSTANCE
=
"seqlastins"
SEQUENCE_FIRST_INSTANCE
=
"seqfirstins"
SEQUENCE_RESHAPE
=
"seqreshape"
POOLING_MAX
=
"max"
DATA
=
'data'
MIXED_LAYER
=
'mixed'
LSTMEMORY
=
'lstmemory'
GRUMEMORY
=
'gated_recurrent'
SEQUENCE_LAST_INSTANCE
=
'seqlastins'
SEQUENCE_FIRST_INSTANCE
=
'seqfirstins'
SEQUENCE_RESHAPE
=
'seqreshape'
POOLING_MAX
=
'max'
POOLING_AVG
=
'average'
FC_LAYER
=
"fc"
FC_LAYER
=
'fc'
COST
=
'cost'
COSINE_SIM_VEC
=
'cos_vm'
COSINE_SIM
=
'cos'
HSIGMOID
=
'hsigmoid'
CONV_LAYER
=
"conv"
CONVTRANS_LAYER
=
"convt"
EXCONV_LAYER
=
"exconv"
EXCONVTRANS_LAYER
=
"exconvt"
CUDNNCONV_LAYER
=
"cudnn_conv"
POOL_LAYER
=
"pool"
CONV_LAYER
=
'conv'
CONVTRANS_LAYER
=
'convt'
EXCONV_LAYER
=
'exconv'
EXCONVTRANS_LAYER
=
'exconvt'
CUDNNCONV_LAYER
=
'cudnn_conv'
POOL_LAYER
=
'pool'
BATCH_NORM_LAYER
=
'batch_norm'
NORM_LAYER
=
'norm'
SUM_TO_ONE_NORM_LAYER
=
'sum_to_one_norm'
...
...
@@ -177,36 +178,38 @@ class LayerType(object):
EOSID_LAYER
=
'eos_id'
RECURRENT_LAYER
=
'recurrent'
CONV_SHIFT_LAYER
=
"conv_shift"
TENSOR_LAYER
=
"tensor"
SEL_FC_LAYER
=
"selective_fc"
SAMPLING_ID_LAYER
=
"sampling_id"
SLOPE_INTERCEPT_LAYER
=
"slope_intercept"
LINEAR_COMBINATION_LAYER
=
"convex_comb"
BLOCK_EXPAND
=
"blockexpand"
MAXOUT
=
"maxout"
SPP_LAYER
=
"spp"
PAD_LAYER
=
"pad"
MULTIPLEX_LAYER
=
"multiplex"
PRINT_LAYER
=
"print"
PRIORBOX_LAYER
=
"priorbox"
CTC_LAYER
=
"ctc"
WARP_CTC_LAYER
=
"warp_ctc"
CRF_LAYER
=
"crf"
CRF_DECODING_LAYER
=
"crf_decoding"
CONV_SHIFT_LAYER
=
'conv_shift'
TENSOR_LAYER
=
'tensor'
SEL_FC_LAYER
=
'selective_fc'
SAMPLING_ID_LAYER
=
'sampling_id'
SLOPE_INTERCEPT_LAYER
=
'slope_intercept'
LINEAR_COMBINATION_LAYER
=
'convex_comb'
BLOCK_EXPAND
=
'blockexpand'
MAXOUT
=
'maxout'
SPP_LAYER
=
'spp'
PAD_LAYER
=
'pad'
MULTIPLEX_LAYER
=
'multiplex'
PRINT_LAYER
=
'print'
PRIORBOX_LAYER
=
'priorbox'
CTC_LAYER
=
'ctc'
WARP_CTC_LAYER
=
'warp_ctc'
CRF_LAYER
=
'crf'
CRF_DECODING_LAYER
=
'crf_decoding'
NCE_LAYER
=
'nce'
RANK_COST
=
"rank-cost"
LAMBDA_COST
=
"lambda_cost"
HUBER
=
"huber"
CROSS_ENTROPY
=
"multi-class-cross-entropy"
CROSS_ENTROPY_WITH_SELFNORM
=
"multi_class_cross_entropy_with_selfnorm"
SOFT_BIN_CLASS_CROSS_ENTROPY
=
"soft_binary_class_cross_entropy"
MULTI_BIN_LABEL_CROSS_ENTROPY
=
"multi_binary_label_cross_entropy"
SUM_COST
=
"sum_cost"
SMOOTH_L1
=
"smooth_l1"
RANK_COST
=
'rank-cost'
LAMBDA_COST
=
'lambda_cost'
HUBER
=
'huber'
CROSS_ENTROPY
=
'multi-class-cross-entropy'
CROSS_ENTROPY_WITH_SELFNORM
=
'multi_class_cross_entropy_with_selfnorm'
SOFT_BIN_CLASS_CROSS_ENTROPY
=
'soft_binary_class_cross_entropy'
MULTI_BIN_LABEL_CROSS_ENTROPY
=
'multi_binary_label_cross_entropy'
SUM_COST
=
'sum_cost'
SMOOTH_L1
=
'smooth_l1'
PRELU
=
'prelu'
@
staticmethod
def
is_layer_type
(
type_name
):
...
...
@@ -4722,7 +4725,7 @@ def ctc_layer(input,
fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
should also be num_classes + 1.
The
simple usage
:
The
example usage is
:
.. code-block:: python
...
...
@@ -4809,7 +4812,7 @@ def warp_ctc_layer(input,
- As a native 'softmax' activation is interated to the warp-ctc library,
'linear' activation is expected instead in the 'input' layer.
The
simple usage
:
The
example usage is
:
.. code-block:: python
...
...
@@ -4870,7 +4873,7 @@ def crf_layer(input,
A layer for calculating the cost of sequential conditional random
field model.
The
simple usage
:
The
example usage is
:
.. code-block:: python
...
...
@@ -4944,7 +4947,7 @@ def crf_decoding_layer(input,
this layer will also calculate error. output.value[i] is 1 for incorrect
decoding or 0 for correct decoding.
The
simple usage
:
The
example usage is
:
.. code-block:: python
...
...
@@ -5137,7 +5140,7 @@ def rank_cost(left,
- :math:`o_i` and :math:`o_j`: the left output and right output.
Their dimension is one.
The
simple usage
:
The
example usage is
:
.. code-block:: python
...
...
@@ -5194,7 +5197,7 @@ def lambda_cost(input,
"""
lambdaCost for lambdaRank LTR approach.
The
simple usage
:
The
example usage is
:
.. code-block:: python
...
...
@@ -5252,6 +5255,8 @@ def cross_entropy(input,
"""
A loss layer for multi class entropy.
The example usage is:
.. code-block:: python
cost = cross_entropy(input=input_layer,
...
...
@@ -5298,6 +5303,8 @@ def cross_entropy_with_selfnorm(input,
A loss layer for multi class entropy with selfnorm.
Input should be a vector of positive numbers, without normalization.
The example usage is:
.. code-block:: python
cost = cross_entropy_with_selfnorm(input=input_layer,
...
...
@@ -5339,6 +5346,8 @@ def sum_cost(input, name=None, layer_attr=None):
"""
A loss layer which calculate the sum of the input as loss
The example usage is:
.. code-block:: python
cost = sum_cost(input=input_layer)
...
...
@@ -5368,6 +5377,8 @@ def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
"""
A loss layer for huber loss.
The example usage is:
.. code-block:: python
cost = huber_cost(input=input_layer,
...
...
@@ -5408,6 +5419,8 @@ def multi_binary_label_cross_entropy(input,
"""
A loss layer for multi binary label cross entropy.
The example usage is:
.. code-block:: python
cost = multi_binary_label_cross_entropy(input=input_layer,
...
...
@@ -5467,6 +5480,8 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
More details can be found by referring to `Fast R-CNN
<https://arxiv.org/pdf/1504.08083v2.pdf>`_
The example usage is:
.. code-block:: python
cost = smooth_l1_cost(input=input_layer,
...
...
@@ -5516,6 +5531,8 @@ def multiplex_layer(input, name=None, layer_attr=None):
where, y is output. :math:`x_{k}` is the k-th input layer and
:math:`k = x_{0}[i] + 1`.
The example usage is:
.. code-block:: python
maxid = multiplex_layer(input=layers)
...
...
@@ -5548,3 +5565,64 @@ def multiplex_layer(input, name=None, layer_attr=None):
layer_type
=
LayerType
.
MULTIPLEX_LAYER
,
parents
=
input
,
size
=
l
.
config
.
size
)
@
wrap_name_default
()
@
layer_support
()
@
wrap_name_default
()
@
wrap_param_attr_default
()
def
prelu_layer
(
input
,
name
=
None
,
partial_sum
=
1
,
param_attr
=
None
,
layer_attr
=
None
):
"""
The Parameter Relu activation that actives outputs with a learnable weight.
Reference:
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf
.. math::
z_i &
\\
quad if
\\
quad z_i > 0
\\\\
a_i * z_i &
\\
quad
\\
mathrm{otherwise}
The example usage is:
.. code-block:: python
prelu = prelu_layer(input=layers, partial_sum=1)
:param name: Name of this layer.
:type name: basestring
:param input: The input layer.
:type input: LayerOutput
:param partial_sum: this parameter makes a group of inputs share a same weight.
- partial_sum = 1, indicates the element-wise activation: each element has a weight.
- partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
- partial_sum = number of outputs, indicates all elements share a same weight.
:type partial_sum: int
:param param_attr: The parameter attribute. See ParameterAttribute for details.
:type param_attr: ParameterAttribute|None
:param layer_attr: Extra layer configurations. Default is None.
:type layer_attr: ExtraLayerAttribute|None
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert
isinstance
(
input
,
LayerOutput
),
'prelu_layer only accepts one input'
assert
isinstance
(
param_attr
,
ParameterAttribute
)
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
PRELU
,
inputs
=
Input
(
input
.
name
,
**
param_attr
.
attr
),
partial_sum
=
partial_sum
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
=
name
,
layer_type
=
LayerType
.
PRELU
,
parents
=
input
,
size
=
l
.
config
.
size
)
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
浏览文件 @
a3123e21
...
...
@@ -5,6 +5,7 @@ last_first_seq test_expand_layer test_ntm_layers test_hsigmoid
img_layers img_trans_layers util_layers simple_rnn_layers unused_layers test_cost_layers
test_rnn_group shared_fc shared_lstm shared_gru test_cost_layers_with_weight
test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops
test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer
)
test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer
test_prelu_layer
)
export
whole_configs
=(
test_split_datasource
)
python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr
0 → 100644
浏览文件 @
a3123e21
type: "nn"
layers {
name: "input"
type: "data"
size: 300
active_type: ""
}
layers {
name: "__prelu_layer_0__"
type: "prelu"
size: 300
active_type: ""
inputs {
input_layer_name: "input"
input_parameter_name: "___prelu_layer_0__.w0"
}
}
parameters {
name: "___prelu_layer_0__.w0"
size: 300
initial_mean: 0.0
initial_std: 0.057735026919
initial_strategy: 0
initial_smart: true
}
input_layer_names: "input"
output_layer_names: "__prelu_layer_0__"
sub_models {
name: "root"
layer_names: "input"
layer_names: "__prelu_layer_0__"
input_layer_names: "input"
output_layer_names: "__prelu_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py
0 → 100644
浏览文件 @
a3123e21
from
paddle.trainer_config_helpers
import
*
data
=
data_layer
(
name
=
'input'
,
size
=
300
)
prelu
=
prelu_layer
(
input
=
data
)
outputs
(
prelu
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录