Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a1d200a5
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a1d200a5
编写于
3月 20, 2019
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick from feature/anakin-engine: Anakin support facebox #16111
上级
a32d4200
变更
25
隐藏空白更改
内联
并排
Showing
25 changed file
with
765 addition
and
28 deletion
+765
-28
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+5
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+130
-0
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+15
-0
paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.cc
...id/framework/ir/simplify_anakin_detection_pattern_pass.cc
+233
-0
paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.h
...uid/framework/ir/simplify_anakin_detection_pattern_pass.h
+41
-0
paddle/fluid/inference/anakin/convert/CMakeLists.txt
paddle/fluid/inference/anakin/convert/CMakeLists.txt
+2
-3
paddle/fluid/inference/anakin/convert/batch_norm.cc
paddle/fluid/inference/anakin/convert/batch_norm.cc
+1
-1
paddle/fluid/inference/anakin/convert/concat.cc
paddle/fluid/inference/anakin/convert/concat.cc
+2
-2
paddle/fluid/inference/anakin/convert/density_prior_box.cc
paddle/fluid/inference/anakin/convert/density_prior_box.cc
+79
-0
paddle/fluid/inference/anakin/convert/density_prior_box.h
paddle/fluid/inference/anakin/convert/density_prior_box.h
+37
-0
paddle/fluid/inference/anakin/convert/detection_out.cc
paddle/fluid/inference/anakin/convert/detection_out.cc
+72
-0
paddle/fluid/inference/anakin/convert/detection_out.h
paddle/fluid/inference/anakin/convert/detection_out.h
+37
-0
paddle/fluid/inference/anakin/convert/flatten.cc
paddle/fluid/inference/anakin/convert/flatten.cc
+3
-12
paddle/fluid/inference/anakin/convert/op_converter.h
paddle/fluid/inference/anakin/convert/op_converter.h
+4
-0
paddle/fluid/inference/anakin/convert/test_concat_op.cc
paddle/fluid/inference/anakin/convert/test_concat_op.cc
+23
-0
paddle/fluid/inference/anakin/convert/test_flatten_op.cc
paddle/fluid/inference/anakin/convert/test_flatten_op.cc
+3
-3
paddle/fluid/inference/anakin/convert/test_reshape_op.cc
paddle/fluid/inference/anakin/convert/test_reshape_op.cc
+21
-0
paddle/fluid/inference/anakin/convert/test_softmax_op.cc
paddle/fluid/inference/anakin/convert/test_softmax_op.cc
+2
-3
paddle/fluid/inference/anakin/convert/test_transpose_op.cc
paddle/fluid/inference/anakin/convert/test_transpose_op.cc
+22
-0
paddle/fluid/inference/anakin/convert/transpose.cc
paddle/fluid/inference/anakin/convert/transpose.cc
+5
-0
paddle/fluid/inference/anakin/convert/ut_helper.h
paddle/fluid/inference/anakin/convert/ut_helper.h
+3
-0
paddle/fluid/inference/anakin/op_teller.cc
paddle/fluid/inference/anakin/op_teller.cc
+9
-2
paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
...luid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
+1
-1
paddle/fluid/inference/api/CMakeLists.txt
paddle/fluid/inference/api/CMakeLists.txt
+5
-0
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+10
-1
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
a1d200a5
...
@@ -71,6 +71,7 @@ pass_library(transpose_flatten_concat_fuse_pass inference)
...
@@ -71,6 +71,7 @@ pass_library(transpose_flatten_concat_fuse_pass inference)
pass_library
(
identity_scale_op_clean_pass base
)
pass_library
(
identity_scale_op_clean_pass base
)
pass_library
(
sync_batch_norm_pass base
)
pass_library
(
sync_batch_norm_pass base
)
pass_library
(
runtime_context_cache_pass base
)
pass_library
(
runtime_context_cache_pass base
)
pass_library
(
simplify_anakin_detection_pattern_pass inference
)
# There may be many transpose-flatten structures in a model, and the output of
# There may be many transpose-flatten structures in a model, and the output of
# these structures will be used as inputs to the concat Op. This pattern will
# these structures will be used as inputs to the concat Op. This pattern will
...
@@ -81,6 +82,10 @@ foreach (index RANGE 3 6)
...
@@ -81,6 +82,10 @@ foreach (index RANGE 3 6)
file
(
APPEND
${
pass_file
}
"USE_PASS(transpose_flatten
${
index
}
_concat_fuse_pass);
\n
"
)
file
(
APPEND
${
pass_file
}
"USE_PASS(transpose_flatten
${
index
}
_concat_fuse_pass);
\n
"
)
endforeach
()
endforeach
()
foreach
(
index RANGE 3 6
)
file
(
APPEND
${
pass_file
}
"USE_PASS(simplify_anakin_detection_pattern_pass
${
index
}
);
\n
"
)
endforeach
()
if
(
WITH_MKLDNN
)
if
(
WITH_MKLDNN
)
pass_library
(
mkldnn_placement_pass base mkldnn
)
pass_library
(
mkldnn_placement_pass base mkldnn
)
pass_library
(
depthwise_conv_mkldnn_pass base mkldnn
)
pass_library
(
depthwise_conv_mkldnn_pass base mkldnn
)
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
a1d200a5
...
@@ -1454,6 +1454,136 @@ PDNode *patterns::TransposeFlattenConcat::operator()(
...
@@ -1454,6 +1454,136 @@ PDNode *patterns::TransposeFlattenConcat::operator()(
return
concat_out
;
return
concat_out
;
}
}
PDNode
*
patterns
::
AnakinDetectionPattern
::
operator
()(
std
::
vector
<
PDNode
*>
conv_in
,
int
times
)
{
// The times represents the repeat times of the
// {prior_box, prior_box_loc_out, flatten, prior_box_var_out, reshape}
const
int
kNumFields
=
7
;
const
int
kPriorBoxLocOffset
=
1
;
const
int
kReshape1Offset
=
2
;
const
int
kReshape1OutOffset
=
3
;
const
int
kPriorBoxVarOffset
=
4
;
const
int
kReshape2Offset
=
5
;
const
int
kReshape2OutOffset
=
6
;
const
int
kBoxCoderThirdInputOffset
=
times
;
const
int
kMultiClassSecondInputNmsOffset
=
times
+
1
;
std
::
vector
<
PDNode
*>
nodes
;
for
(
int
i
=
0
;
i
<
times
;
i
++
)
{
nodes
.
push_back
(
pattern
->
NewNode
(
GetNodeName
(
"prior_box"
+
std
::
to_string
(
i
)))
->
assert_is_op
(
"density_prior_box"
));
nodes
.
push_back
(
pattern
->
NewNode
(
GetNodeName
(
"box_out"
+
std
::
to_string
(
i
)))
->
assert_is_op_output
(
"density_prior_box"
,
"Boxes"
)
->
assert_is_op_input
(
"reshape2"
,
"X"
)
->
AsIntermediate
());
nodes
.
push_back
(
pattern
->
NewNode
(
GetNodeName
(
"reshape1"
+
std
::
to_string
(
i
)))
->
assert_is_op
(
"reshape2"
));
nodes
.
push_back
(
pattern
->
NewNode
(
GetNodeName
(
"reshape1_out"
+
std
::
to_string
(
i
)))
->
assert_is_op_output
(
"reshape2"
)
->
assert_is_op_nth_input
(
"concat"
,
"X"
,
i
)
->
AsIntermediate
());
nodes
.
push_back
(
pattern
->
NewNode
(
GetNodeName
(
"box_var_out"
+
std
::
to_string
(
i
)))
->
assert_is_op_output
(
"density_prior_box"
,
"Variances"
)
->
assert_is_op_input
(
"reshape2"
,
"X"
)
->
AsIntermediate
());
nodes
.
push_back
(
pattern
->
NewNode
(
GetNodeName
(
"reshape2"
+
std
::
to_string
(
i
)))
->
assert_is_op
(
"reshape2"
));
nodes
.
push_back
(
pattern
->
NewNode
(
GetNodeName
(
"reshape2_out"
+
std
::
to_string
(
i
)))
->
assert_is_op_output
(
"reshape2"
)
->
assert_is_op_nth_input
(
"concat"
,
"X"
,
i
)
->
AsIntermediate
());
}
auto
concat_op1
=
pattern
->
NewNode
(
GetNodeName
(
"concat1"
))
->
assert_is_op
(
"concat"
)
->
assert_op_has_n_inputs
(
"concat"
,
times
);
auto
concat_out1
=
pattern
->
NewNode
(
GetNodeName
(
"concat1_out"
))
->
assert_is_op_output
(
"concat"
)
->
AsIntermediate
();
auto
concat_op2
=
pattern
->
NewNode
(
GetNodeName
(
"concat2"
))
->
assert_is_op
(
"concat"
)
->
assert_op_has_n_inputs
(
"concat"
,
times
);
auto
concat_out2
=
pattern
->
NewNode
(
GetNodeName
(
"concat2_out"
))
->
assert_is_op_output
(
"concat"
)
->
AsIntermediate
();
auto
box_coder_op
=
pattern
->
NewNode
(
GetNodeName
(
"box_coder"
))
->
assert_is_op
(
"box_coder"
)
->
assert_op_has_n_inputs
(
"box_coder"
,
3
);
auto
box_coder_out
=
pattern
->
NewNode
(
GetNodeName
(
"box_coder_out"
))
->
assert_is_op_output
(
"box_coder"
)
->
AsIntermediate
();
auto
multiclass_nms_op
=
pattern
->
NewNode
(
GetNodeName
(
"multiclass_nms"
))
->
assert_is_op
(
"multiclass_nms"
)
->
assert_op_has_n_inputs
(
"multiclass_nms"
,
2
);
auto
multiclass_nms_out
=
pattern
->
NewNode
(
GetNodeName
(
"multiclass_nms_out"
))
->
assert_is_op_output
(
"multiclass_nms"
)
->
AsOutput
();
std
::
vector
<
PDNode
*>
reshape1_outs
;
std
::
vector
<
PDNode
*>
reshape2_outs
;
for
(
int
i
=
0
;
i
<
times
;
i
++
)
{
conv_in
[
i
]
->
AsInput
();
// prior_box
nodes
[
i
*
kNumFields
]
->
LinksFrom
({
conv_in
[
i
]});
// prior_box box out
nodes
[
i
*
kNumFields
+
kPriorBoxLocOffset
]
->
LinksFrom
(
{
nodes
[
i
*
kNumFields
]});
// reshape
nodes
[
i
*
kNumFields
+
kReshape1Offset
]
->
LinksFrom
(
{
nodes
[
i
*
kNumFields
+
kPriorBoxLocOffset
]});
// reshape_out
nodes
[
i
*
kNumFields
+
kReshape1OutOffset
]
->
LinksFrom
(
{
nodes
[
i
*
kNumFields
+
kReshape1Offset
]});
nodes
[
i
*
kNumFields
+
kPriorBoxVarOffset
]
->
LinksFrom
(
{
nodes
[
i
*
kNumFields
]});
// reshape
nodes
[
i
*
kNumFields
+
kReshape2Offset
]
->
LinksFrom
(
{
nodes
[
i
*
kNumFields
+
kPriorBoxVarOffset
]});
// reshape_out
nodes
[
i
*
kNumFields
+
kReshape2OutOffset
]
->
LinksFrom
(
{
nodes
[
i
*
kNumFields
+
kReshape2Offset
]});
reshape1_outs
.
push_back
(
nodes
[
i
*
kNumFields
+
kReshape1OutOffset
]);
reshape2_outs
.
push_back
(
nodes
[
i
*
kNumFields
+
kReshape2OutOffset
]);
}
concat_op1
->
LinksFrom
(
reshape1_outs
);
concat_op2
->
LinksFrom
(
reshape2_outs
);
concat_out1
->
LinksFrom
({
concat_op1
});
concat_out2
->
LinksFrom
({
concat_op2
});
conv_in
[
kBoxCoderThirdInputOffset
]
->
AsInput
();
conv_in
[
kMultiClassSecondInputNmsOffset
]
->
AsInput
();
box_coder_op
->
LinksFrom
(
{
concat_out1
,
concat_out2
,
conv_in
[
kBoxCoderThirdInputOffset
]});
box_coder_out
->
LinksFrom
({
box_coder_op
});
multiclass_nms_op
->
LinksFrom
({
box_coder_out
,
conv_in
[
kMultiClassSecondInputNmsOffset
]})
.
LinksTo
({
multiclass_nms_out
});
return
multiclass_nms_out
;
}
}
// namespace ir
}
// namespace ir
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
a1d200a5
...
@@ -841,6 +841,21 @@ struct TransposeFlattenConcat : public PatternBase {
...
@@ -841,6 +841,21 @@ struct TransposeFlattenConcat : public PatternBase {
}
}
};
};
struct
AnakinDetectionPattern
:
public
PatternBase
{
AnakinDetectionPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"anakin_detect_pattern"
)
{}
PDNode
*
operator
()(
std
::
vector
<
PDNode
*>
conv_inputs
,
int
times
);
std
::
string
GetNodeName
(
const
std
::
string
&
op_type
)
{
return
PDNodeName
(
name_scope_
,
repr_
,
id_
,
op_type
);
}
PDNode
*
GetPDNode
(
const
std
::
string
&
op_type
)
{
return
pattern
->
RetrieveNode
(
GetNodeName
(
op_type
));
}
};
}
// namespace patterns
}
// namespace patterns
// Link two ir::Nodes from each other.
// Link two ir::Nodes from each other.
...
...
paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.cc
0 → 100644
浏览文件 @
a1d200a5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
template
<
int
times
>
std
::
unique_ptr
<
ir
::
Graph
>
SimplifyAnakinDetectionPatternPass
<
times
>::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
const
std
::
string
pattern_name
=
"simplify_anakin_detection_pattern_pass"
+
std
::
to_string
(
times
);
FusePassBase
::
Init
(
pattern_name
,
graph
.
get
());
GraphPatternDetector
gpd
;
std
::
vector
<
PDNode
*>
input_nodes
;
for
(
int
i
=
0
;
i
<
times
;
i
++
)
{
input_nodes
.
push_back
(
gpd
.
mutable_pattern
()
->
NewNode
(
"x"
+
std
::
to_string
(
i
))
->
assert_is_op_input
(
"density_prior_box"
,
"Input"
)
->
AsInput
());
}
input_nodes
.
push_back
(
gpd
.
mutable_pattern
()
->
NewNode
(
"x"
+
std
::
to_string
(
times
))
->
assert_is_op_input
(
"box_coder"
,
"TargetBox"
)
->
AsInput
());
input_nodes
.
push_back
(
gpd
.
mutable_pattern
()
->
NewNode
(
"x"
+
std
::
to_string
(
times
+
1
))
->
assert_is_op_input
(
"multiclass_nms"
,
"Scores"
)
->
AsInput
());
patterns
::
AnakinDetectionPattern
pattern
(
gpd
.
mutable_pattern
(),
pattern_name
);
pattern
(
input_nodes
,
times
);
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
const
int
kNumFields
=
7
;
const
int
kPriorBoxLocOffset
=
1
;
const
int
kReshape1Offset
=
2
;
const
int
kReshape1OutOffset
=
3
;
const
int
kPriorBoxVarOffset
=
4
;
const
int
kReshape2Offset
=
5
;
const
int
kReshape2OutOffset
=
6
;
std
::
vector
<
Node
*>
nodes
;
for
(
int
i
=
0
;
i
<
times
;
i
++
)
{
PADDLE_ENFORCE
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"prior_box"
+
std
::
to_string
(
i
))));
PADDLE_ENFORCE
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"box_out"
+
std
::
to_string
(
i
))));
PADDLE_ENFORCE
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"reshape1"
+
std
::
to_string
(
i
))));
PADDLE_ENFORCE
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"reshape1_out"
+
std
::
to_string
(
i
))));
PADDLE_ENFORCE
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"reshape2"
+
std
::
to_string
(
i
))));
PADDLE_ENFORCE
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"reshape2_out"
+
std
::
to_string
(
i
))));
PADDLE_ENFORCE
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"box_var_out"
+
std
::
to_string
(
i
))));
nodes
.
push_back
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"prior_box"
+
std
::
to_string
(
i
))));
nodes
.
push_back
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"box_out"
+
std
::
to_string
(
i
))));
nodes
.
push_back
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"reshape1"
+
std
::
to_string
(
i
))));
nodes
.
push_back
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"reshape1_out"
+
std
::
to_string
(
i
))));
nodes
.
push_back
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"box_var_out"
+
std
::
to_string
(
i
))));
nodes
.
push_back
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"reshape2"
+
std
::
to_string
(
i
))));
nodes
.
push_back
(
subgraph
.
at
(
pattern
.
GetPDNode
(
"reshape2_out"
+
std
::
to_string
(
i
))));
}
Node
*
concat_op1
=
subgraph
.
at
(
pattern
.
GetPDNode
(
"concat1"
));
Node
*
concat_out1
=
subgraph
.
at
(
pattern
.
GetPDNode
(
"concat1_out"
));
Node
*
concat_op2
=
subgraph
.
at
(
pattern
.
GetPDNode
(
"concat2"
));
Node
*
concat_out2
=
subgraph
.
at
(
pattern
.
GetPDNode
(
"concat2_out"
));
Node
*
box_coder_third_input
=
subgraph
.
at
(
input_nodes
[
times
]);
Node
*
box_coder_op
=
subgraph
.
at
(
pattern
.
GetPDNode
(
"box_coder"
));
Node
*
box_coder_out
=
subgraph
.
at
(
pattern
.
GetPDNode
(
"box_coder_out"
));
Node
*
multiclass_nms_second_input
=
subgraph
.
at
(
input_nodes
[
times
+
1
]);
Node
*
multiclass_nms
=
subgraph
.
at
(
pattern
.
GetPDNode
(
"multiclass_nms"
));
Node
*
multiclass_nms_out
=
subgraph
.
at
(
pattern
.
GetPDNode
(
"multiclass_nms_out"
));
std
::
string
code_type
=
boost
::
get
<
std
::
string
>
(
box_coder_op
->
Op
()
->
GetAttr
(
"code_type"
));
bool
box_normalized
=
boost
::
get
<
bool
>
(
box_coder_op
->
Op
()
->
GetAttr
(
"box_normalized"
));
// auto variance =
// boost::get<std::vector<float>>(box_coder_op->Op()->GetAttr("variance"));
int
background_label
=
boost
::
get
<
int
>
(
multiclass_nms
->
Op
()
->
GetAttr
(
"background_label"
));
float
score_threshold
=
boost
::
get
<
float
>
(
multiclass_nms
->
Op
()
->
GetAttr
(
"score_threshold"
));
int
nms_top_k
=
boost
::
get
<
int
>
(
multiclass_nms
->
Op
()
->
GetAttr
(
"nms_top_k"
));
float
nms_threshold
=
boost
::
get
<
float
>
(
multiclass_nms
->
Op
()
->
GetAttr
(
"nms_threshold"
));
float
nms_eta
=
boost
::
get
<
float
>
(
multiclass_nms
->
Op
()
->
GetAttr
(
"nms_eta"
));
int
keep_top_k
=
boost
::
get
<
int
>
(
multiclass_nms
->
Op
()
->
GetAttr
(
"keep_top_k"
));
std
::
vector
<
std
::
string
>
concat1_input_names
;
for
(
int
i
=
0
;
i
<
times
;
i
++
)
{
concat1_input_names
.
push_back
(
nodes
[
i
*
kNumFields
+
kPriorBoxLocOffset
]
->
Name
());
}
int
axis
=
boost
::
get
<
int
>
(
concat_op1
->
Op
()
->
GetAttr
(
"axis"
));
framework
::
OpDesc
concat1_desc
;
concat1_desc
.
SetType
(
"concat"
);
concat1_desc
.
SetInput
(
"X"
,
concat1_input_names
);
concat1_desc
.
SetAttr
(
"axis"
,
axis
);
concat1_desc
.
SetOutput
(
"Out"
,
{
concat_out1
->
Name
()});
auto
*
new_add_concat_op
=
graph
->
CreateOpNode
(
&
concat1_desc
);
for
(
int
i
=
0
;
i
<
times
;
i
++
)
{
nodes
[
i
*
kNumFields
+
kPriorBoxLocOffset
]
->
outputs
.
push_back
(
new_add_concat_op
);
new_add_concat_op
->
inputs
.
push_back
(
nodes
[
i
*
kNumFields
+
kPriorBoxLocOffset
]);
}
framework
::
OpDesc
new_op_desc
;
new_op_desc
.
SetType
(
"detection_out"
);
new_op_desc
.
SetInput
(
"PriorBox"
,
{
concat_out1
->
Name
()});
new_op_desc
.
SetInput
(
"TargetBox"
,
{
box_coder_third_input
->
Name
()});
new_op_desc
.
SetInput
(
"Scores"
,
{
multiclass_nms_second_input
->
Name
()});
new_op_desc
.
SetAttr
(
"code_type"
,
code_type
);
new_op_desc
.
SetAttr
(
"box_normalized"
,
box_normalized
);
new_op_desc
.
SetAttr
(
"background_label"
,
background_label
);
new_op_desc
.
SetAttr
(
"score_threshold"
,
score_threshold
);
new_op_desc
.
SetAttr
(
"nms_top_k"
,
nms_top_k
);
new_op_desc
.
SetAttr
(
"nms_threshold"
,
nms_threshold
);
new_op_desc
.
SetAttr
(
"nms_eta"
,
nms_eta
);
new_op_desc
.
SetAttr
(
"keep_top_k"
,
keep_top_k
);
new_op_desc
.
SetOutput
(
"Out"
,
{
multiclass_nms_out
->
Name
()});
new_op_desc
.
Flush
();
// Create a new node for the fused op.
auto
*
detection_out_op
=
graph
->
CreateOpNode
(
&
new_op_desc
);
std
::
unordered_set
<
const
Node
*>
delete_nodes
;
for
(
int
i
=
0
;
i
<
times
;
i
++
)
{
nodes
[
i
*
kNumFields
+
kPriorBoxLocOffset
]
->
outputs
.
push_back
(
concat_op1
);
delete_nodes
.
insert
(
nodes
[
i
*
kNumFields
+
kReshape1Offset
]);
delete_nodes
.
insert
(
nodes
[
i
*
kNumFields
+
kReshape1OutOffset
]);
delete_nodes
.
insert
(
nodes
[
i
*
kNumFields
+
kPriorBoxVarOffset
]);
delete_nodes
.
insert
(
nodes
[
i
*
kNumFields
+
kReshape2Offset
]);
delete_nodes
.
insert
(
nodes
[
i
*
kNumFields
+
kReshape2OutOffset
]);
}
delete_nodes
.
insert
(
concat_op1
);
delete_nodes
.
insert
(
concat_op2
);
delete_nodes
.
insert
(
concat_out2
);
delete_nodes
.
insert
(
box_coder_op
);
delete_nodes
.
insert
(
box_coder_out
);
delete_nodes
.
insert
(
multiclass_nms
);
new_add_concat_op
->
outputs
.
push_back
(
concat_out1
);
concat_out1
->
inputs
.
push_back
(
new_add_concat_op
);
detection_out_op
->
inputs
.
push_back
(
concat_out1
);
detection_out_op
->
inputs
.
push_back
(
box_coder_third_input
);
detection_out_op
->
inputs
.
push_back
(
multiclass_nms_second_input
);
detection_out_op
->
outputs
.
push_back
(
multiclass_nms_out
);
concat_out1
->
outputs
.
push_back
(
detection_out_op
);
box_coder_third_input
->
outputs
.
push_back
(
detection_out_op
);
multiclass_nms_second_input
->
outputs
.
push_back
(
detection_out_op
);
multiclass_nms_out
->
inputs
.
push_back
(
detection_out_op
);
// Delete the unneeded nodes.
GraphSafeRemoveNodes
(
graph
.
get
(),
delete_nodes
);
};
gpd
(
graph
.
get
(),
handler
);
return
graph
;
}
template
class
SimplifyAnakinDetectionPatternPass
<
1
>;
template
class
SimplifyAnakinDetectionPatternPass
<
3
>;
template
class
SimplifyAnakinDetectionPatternPass
<
4
>;
template
class
SimplifyAnakinDetectionPatternPass
<
5
>;
template
class
SimplifyAnakinDetectionPatternPass
<
6
>;
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
simplify_anakin_detection_pattern_pass
,
paddle
::
framework
::
ir
::
SimplifyAnakinDetectionPatternPass
<
1
>
);
REGISTER_PASS
(
simplify_anakin_detection_pattern_pass3
,
paddle
::
framework
::
ir
::
SimplifyAnakinDetectionPatternPass
<
3
>
);
REGISTER_PASS
(
simplify_anakin_detection_pattern_pass4
,
paddle
::
framework
::
ir
::
SimplifyAnakinDetectionPatternPass
<
4
>
);
REGISTER_PASS
(
simplify_anakin_detection_pattern_pass5
,
paddle
::
framework
::
ir
::
SimplifyAnakinDetectionPatternPass
<
5
>
);
REGISTER_PASS
(
simplify_anakin_detection_pattern_pass6
,
paddle
::
framework
::
ir
::
SimplifyAnakinDetectionPatternPass
<
6
>
);
paddle/fluid/framework/ir/simplify_anakin_detection_pattern_pass.h
0 → 100644
浏览文件 @
a1d200a5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <unordered_set>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
// There may be many transpose-flatten structures in a model, and the output of
// these structures will be used as inputs to the concat Op. This pattern will
// be detected by our pass. The times here represents the repeat times of this
// structure.
template
<
int
times
>
class
SimplifyAnakinDetectionPatternPass
:
public
FusePassBase
{
public:
virtual
~
SimplifyAnakinDetectionPatternPass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/inference/anakin/convert/CMakeLists.txt
浏览文件 @
a1d200a5
cc_library
(
anakin_op_converter SRCS fc.cc conv2d.cc conv2d_fusion.cc
cc_library
(
anakin_op_converter SRCS fc.cc conv2d.cc conv2d_fusion.cc
elementwise.cc activation.cc pool2d.cc concat.cc split.cc relu.cc softmax.cc batch_norm.cc reshape.cc flatten.cc transpose.cc DEPS anakin_engine framework_proto scope op_registry
)
elementwise.cc activation.cc pool2d.cc concat.cc split.cc relu.cc softmax.cc batch_norm.cc reshape.cc flatten.cc transpose.cc
density_prior_box.cc detection_out.cc
DEPS anakin_engine framework_proto scope op_registry
)
cc_test
(
test_anakin_fc SRCS test_fc_op.cc DEPS anakin_op_converter mul_op
)
cc_test
(
test_anakin_fc SRCS test_fc_op.cc DEPS anakin_op_converter mul_op
)
cc_test
(
test_anakin_conv2d SRCS test_conv2d_op.cc DEPS anakin_op_converter conv_op im2col vol2col depthwise_conv
)
cc_test
(
test_anakin_conv2d SRCS test_conv2d_op.cc DEPS anakin_op_converter conv_op im2col vol2col depthwise_conv
)
cc_test
(
test_anakin_activation SRCS test_activation_op.cc DEPS activation_op anakin_op_converter
)
cc_test
(
test_anakin_activation SRCS test_activation_op.cc DEPS activation_op anakin_op_converter
)
cc_test
(
test_anakin_pool2d SRCS test_pool2d_op.cc DEPS anakin_op_converter pool_op pooling
)
cc_test
(
test_anakin_pool2d SRCS test_pool2d_op.cc DEPS anakin_op_converter pool_op pooling
)
cc_test
(
test_anakin_concat SRCS test_concat_op.cc DEPS anakin_op_converter concat_op concat_and_split
)
cc_test
(
test_anakin_concat SRCS test_concat_op.cc DEPS anakin_op_converter concat_op concat_and_split
)
cc_test
(
test_anakin_split SRCS test_split_op.cc DEPS anakin_op_converter split_op concat_and_split
)
cc_test
(
test_anakin_split SRCS test_split_op.cc DEPS anakin_op_converter split_op concat_and_split
)
cc_test
(
test_anakin_elementwise SRCS test_elementwise_op.cc DEPS
cc_test
(
test_anakin_elementwise SRCS test_elementwise_op.cc DEPS anakin_op_converter elementwise_add_op
)
anakin_op_converter elementwise_add_op
)
cc_test
(
test_anakin_relu SRCS test_relu_op.cc DEPS activation_op anakin_op_converter SERIAL
)
cc_test
(
test_anakin_relu SRCS test_relu_op.cc DEPS activation_op anakin_op_converter SERIAL
)
cc_test
(
test_anakin_softmax SRCS test_softmax_op.cc DEPS anakin_op_converter softmax_op softmax
)
cc_test
(
test_anakin_softmax SRCS test_softmax_op.cc DEPS anakin_op_converter softmax_op softmax
)
cc_test
(
test_anakin_reshape SRCS test_reshape_op.cc DEPS anakin_op_converter reshape_op
)
cc_test
(
test_anakin_reshape SRCS test_reshape_op.cc DEPS anakin_op_converter reshape_op
)
...
...
paddle/fluid/inference/anakin/convert/batch_norm.cc
浏览文件 @
a1d200a5
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
#include "paddle/fluid/inference/anakin/convert/batch_norm.h"
#include "paddle/fluid/inference/anakin/convert/batch_norm.h"
#include <math.h>
#include <math.h>
#include <algorithm>
#include <map>
#include <map>
#include <string>
#include <string>
#include <vector>
#include <vector>
...
@@ -41,7 +42,6 @@ void BatchNormOpConverter::operator()(const framework::proto::OpDesc &op,
...
@@ -41,7 +42,6 @@ void BatchNormOpConverter::operator()(const framework::proto::OpDesc &op,
auto
output
=
op_desc
.
Output
(
"Y"
).
front
();
auto
output
=
op_desc
.
Output
(
"Y"
).
front
();
auto
op_name
=
op_desc
.
Type
()
+
":"
+
op_desc
.
Output
(
"Y"
).
front
();
auto
op_name
=
op_desc
.
Type
()
+
":"
+
op_desc
.
Output
(
"Y"
).
front
();
bool
is_test
=
boost
::
get
<
bool
>
(
op_desc
.
GetAttr
(
"is_test"
));
auto
epsilon
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"epsilon"
));
auto
epsilon
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"epsilon"
));
auto
bn_op_name
=
op_name
+
":bn"
;
auto
bn_op_name
=
op_name
+
":bn"
;
...
...
paddle/fluid/inference/anakin/convert/concat.cc
浏览文件 @
a1d200a5
...
@@ -34,8 +34,8 @@ void ConcatOpConverter::operator()(const framework::proto::OpDesc &op,
...
@@ -34,8 +34,8 @@ void ConcatOpConverter::operator()(const framework::proto::OpDesc &op,
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
int
axis
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"axis"
));
int
axis
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"axis"
));
auto
input_names
=
op_desc
.
Input
(
"X"
);
auto
input_names
=
op_desc
.
Input
(
"X"
);
PADDLE_ENFORCE
(
axis
>
0
,
//
PADDLE_ENFORCE(axis > 0,
"The axis attr of Concat op should be large than 0 for trt"
);
//
"The axis attr of Concat op should be large than 0 for trt");
auto
y_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
y_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
op_name
=
op_desc
.
Type
()
+
":"
+
op_desc
.
Output
(
"Out"
).
front
();
auto
op_name
=
op_desc
.
Type
()
+
":"
+
op_desc
.
Output
(
"Out"
).
front
();
...
...
paddle/fluid/inference/anakin/convert/density_prior_box.cc
0 → 100644
浏览文件 @
a1d200a5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/anakin/convert/density_prior_box.h"
#include <algorithm>
#include <map>
#include <vector>
using
anakin
::
graph
::
GraphGlobalMem
;
using
anakin
::
AK_FLOAT
;
using
anakin
::
saber
::
NV
;
using
anakin
::
saber
::
Shape
;
using
anakin
::
PTuple
;
namespace
paddle
{
namespace
inference
{
namespace
anakin
{
void
DensityPriorBoxOpConverter
::
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
{
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
auto
input_name
=
op_desc
.
Input
(
"Input"
).
front
();
auto
image_name
=
op_desc
.
Input
(
"Image"
).
front
();
auto
output_name
=
op_desc
.
Output
(
"Boxes"
).
front
();
auto
op_name
=
op_desc
.
Type
()
+
":"
+
op_desc
.
Output
(
"Boxes"
).
front
();
auto
fixed_sizes
=
boost
::
get
<
std
::
vector
<
float
>>
(
op_desc
.
GetAttr
(
"fixed_sizes"
));
auto
fixed_ratios
=
boost
::
get
<
std
::
vector
<
float
>>
(
op_desc
.
GetAttr
(
"fixed_ratios"
));
auto
densities
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"densities"
));
// lack flip
auto
clip
=
boost
::
get
<
bool
>
(
op_desc
.
GetAttr
(
"clip"
));
auto
variances
=
boost
::
get
<
std
::
vector
<
float
>>
(
op_desc
.
GetAttr
(
"variances"
));
// lack img_h, img_w
auto
step_h
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"step_h"
));
auto
step_w
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"step_w"
));
auto
offset
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"offset"
));
std
::
vector
<
std
::
string
>
order
=
{
"MIN"
,
"COM"
,
"MAX"
};
std
::
vector
<
float
>
temp_v
=
{};
engine_
->
AddOp
(
op_name
,
"PriorBox"
,
{
input_name
,
image_name
},
{
output_name
});
engine_
->
AddOpAttr
<
PTuple
<
float
>>
(
op_name
,
"min_size"
,
temp_v
);
engine_
->
AddOpAttr
<
PTuple
<
float
>>
(
op_name
,
"max_size"
,
temp_v
);
engine_
->
AddOpAttr
<
PTuple
<
float
>>
(
op_name
,
"aspect_ratio"
,
temp_v
);
engine_
->
AddOpAttr
<
PTuple
<
float
>>
(
op_name
,
"fixed_sizes"
,
fixed_sizes
);
engine_
->
AddOpAttr
<
PTuple
<
float
>>
(
op_name
,
"fixed_ratios"
,
fixed_ratios
);
engine_
->
AddOpAttr
<
PTuple
<
int
>>
(
op_name
,
"density"
,
densities
);
engine_
->
AddOpAttr
(
op_name
,
"is_flip"
,
false
);
engine_
->
AddOpAttr
(
op_name
,
"is_clip"
,
clip
);
engine_
->
AddOpAttr
<
PTuple
<
float
>>
(
op_name
,
"variance"
,
variances
);
engine_
->
AddOpAttr
(
op_name
,
"img_h"
,
static_cast
<
int
>
(
0
));
engine_
->
AddOpAttr
(
op_name
,
"img_w"
,
static_cast
<
int
>
(
0
));
engine_
->
AddOpAttr
(
op_name
,
"step_h"
,
step_h
);
engine_
->
AddOpAttr
(
op_name
,
"step_w"
,
step_w
);
engine_
->
AddOpAttr
(
op_name
,
"offset"
,
offset
);
engine_
->
AddOpAttr
<
PTuple
<
std
::
string
>>
(
op_name
,
"order"
,
order
);
}
}
// namespace anakin
}
// namespace inference
}
// namespace paddle
REGISTER_ANAKIN_OP_CONVERTER
(
density_prior_box
,
DensityPriorBoxOpConverter
);
paddle/fluid/inference/anakin/convert/density_prior_box.h
0 → 100644
浏览文件 @
a1d200a5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <string>
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
anakin
{
class
DensityPriorBoxOpConverter
:
public
AnakinOpConverter
{
public:
DensityPriorBoxOpConverter
()
=
default
;
virtual
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
;
virtual
~
DensityPriorBoxOpConverter
()
{}
};
}
// namespace anakin
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/anakin/convert/detection_out.cc
0 → 100644
浏览文件 @
a1d200a5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/anakin/convert/detection_out.h"
#include <algorithm>
#include <map>
using
anakin
::
graph
::
GraphGlobalMem
;
using
anakin
::
AK_FLOAT
;
using
anakin
::
saber
::
NV
;
using
anakin
::
saber
::
Shape
;
namespace
paddle
{
namespace
inference
{
namespace
anakin
{
void
DetectionOutOpConverter
::
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
{
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
auto
target_name
=
op_desc
.
Input
(
"TargetBox"
).
front
();
auto
prior_box_name
=
op_desc
.
Input
(
"PriorBox"
).
front
();
auto
scores_name
=
op_desc
.
Input
(
"Scores"
).
front
();
auto
output_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
op_name
=
op_desc
.
Type
()
+
":"
+
op_desc
.
Output
(
"Out"
).
front
();
auto
code_type
=
boost
::
get
<
std
::
string
>
(
op_desc
.
GetAttr
(
"code_type"
));
auto
background_label
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"background_label"
));
auto
score_threshold
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"score_threshold"
));
auto
nms_top_k
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"nms_top_k"
));
auto
nms_threshold
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"nms_threshold"
));
auto
nms_eta
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"nms_eta"
));
auto
keep_top_k
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"keep_top_k"
));
std
::
string
anakin_code_type
;
if
(
code_type
==
"decode_center_size"
)
{
anakin_code_type
=
"CENTER_SIZE"
;
}
else
if
(
code_type
==
"encode_center_size"
)
{
PADDLE_THROW
(
"Not support encode_center_size code_type in DetectionOut of anakin"
);
}
engine_
->
AddOp
(
op_name
,
"DetectionOutput"
,
{
target_name
,
scores_name
,
prior_box_name
},
{
output_name
});
engine_
->
AddOpAttr
(
op_name
,
"share_location"
,
true
);
engine_
->
AddOpAttr
(
op_name
,
"variance_encode_in_target"
,
false
);
engine_
->
AddOpAttr
(
op_name
,
"class_num"
,
static_cast
<
int
>
(
0
));
engine_
->
AddOpAttr
(
op_name
,
"background_id"
,
background_label
);
engine_
->
AddOpAttr
(
op_name
,
"keep_top_k"
,
keep_top_k
);
engine_
->
AddOpAttr
(
op_name
,
"code_type"
,
anakin_code_type
);
engine_
->
AddOpAttr
(
op_name
,
"conf_thresh"
,
score_threshold
);
engine_
->
AddOpAttr
(
op_name
,
"nms_top_k"
,
nms_top_k
);
engine_
->
AddOpAttr
(
op_name
,
"nms_thresh"
,
nms_threshold
);
engine_
->
AddOpAttr
(
op_name
,
"nms_eta"
,
nms_eta
);
}
}
// namespace anakin
}
// namespace inference
}
// namespace paddle
REGISTER_ANAKIN_OP_CONVERTER
(
detection_out
,
DetectionOutOpConverter
);
paddle/fluid/inference/anakin/convert/detection_out.h
0 → 100644
浏览文件 @
a1d200a5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <string>
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
anakin
{
class
DetectionOutOpConverter
:
public
AnakinOpConverter
{
public:
DetectionOutOpConverter
()
=
default
;
virtual
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
;
virtual
~
DetectionOutOpConverter
()
{}
};
}
// namespace anakin
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/anakin/convert/flatten.cc
浏览文件 @
a1d200a5
...
@@ -34,20 +34,11 @@ void FlattenOpConverter::operator()(const framework::proto::OpDesc &op,
...
@@ -34,20 +34,11 @@ void FlattenOpConverter::operator()(const framework::proto::OpDesc &op,
auto
input
=
op_desc
.
Input
(
"X"
).
front
();
auto
input
=
op_desc
.
Input
(
"X"
).
front
();
auto
output
=
op_desc
.
Output
(
"Out"
).
front
();
auto
output
=
op_desc
.
Output
(
"Out"
).
front
();
auto
in_dims
=
scope
.
FindVar
(
input
)
->
Get
<
framework
::
LoDTensor
>
().
dims
();
int
axis
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"axis"
));
int
axis
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"axis"
));
PADDLE_ENFORCE
(
axis
==
1
,
"the anakin flatten op converter now only support aixs == 1."
);
int
inner
=
1
;
std
::
vector
<
int
>
out_dims
=
{
0
,
-
1
,
1
,
1
};
int
outer
=
1
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
i
++
)
{
if
(
i
<
axis
)
{
outer
*=
in_dims
[
i
];
}
else
{
inner
*=
in_dims
[
i
];
}
}
std
::
vector
<
int
>
out_dims
=
{
1
,
outer
,
inner
,
1
};
auto
op_name
=
op_desc
.
Type
()
+
":"
+
op_desc
.
Output
(
"Out"
).
front
();
auto
op_name
=
op_desc
.
Type
()
+
":"
+
op_desc
.
Output
(
"Out"
).
front
();
engine_
->
AddOp
(
op_name
,
"Reshape"
,
{
input
},
{
output
});
engine_
->
AddOp
(
op_name
,
"Reshape"
,
{
input
},
{
output
});
engine_
->
AddOpAttr
<
PTuple
<
int
>>
(
op_name
,
"dims"
,
out_dims
);
engine_
->
AddOpAttr
<
PTuple
<
int
>>
(
op_name
,
"dims"
,
out_dims
);
...
...
paddle/fluid/inference/anakin/convert/op_converter.h
浏览文件 @
a1d200a5
...
@@ -47,6 +47,10 @@ class AnakinOpConverter {
...
@@ -47,6 +47,10 @@ class AnakinOpConverter {
std
::
string
op_type
=
op_desc
.
Type
();
std
::
string
op_type
=
op_desc
.
Type
();
AnakinOpConverter
*
it
=
nullptr
;
AnakinOpConverter
*
it
=
nullptr
;
if
(
op_type
==
"reshape2"
)
op_type
=
"reshape"
;
if
(
op_type
==
"transpose2"
)
op_type
=
"transpose"
;
if
(
op_type
==
"flatten2"
)
op_type
=
"flatten"
;
if
(
!
it
)
{
if
(
!
it
)
{
it
=
Registry
<
AnakinOpConverter
>::
Global
().
Lookup
(
op_type
);
it
=
Registry
<
AnakinOpConverter
>::
Global
().
Lookup
(
op_type
);
}
}
...
...
paddle/fluid/inference/anakin/convert/test_concat_op.cc
浏览文件 @
a1d200a5
...
@@ -44,6 +44,29 @@ TEST(concat_op, test) {
...
@@ -44,6 +44,29 @@ TEST(concat_op, test) {
validator
.
Execute
(
1
);
validator
.
Execute
(
1
);
}
}
TEST
(
concat_op
,
test2
)
{
std
::
unordered_set
<
std
::
string
>
parameters
({
""
});
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
validator
.
DeclInputVar
(
"concat_x1"
,
{
1
,
4
});
validator
.
DeclInputVar
(
"concat_x2"
,
{
3
,
4
});
validator
.
DeclInputVar
(
"concat_x3"
,
{
2
,
4
});
validator
.
DeclOutputVar
(
"concat_out"
,
{
6
,
4
});
// Prepare Op description
framework
::
OpDesc
desc
;
desc
.
SetType
(
"concat"
);
desc
.
SetInput
(
"X"
,
{
"concat_x1"
,
"concat_x2"
,
"concat_x3"
});
desc
.
SetOutput
(
"Out"
,
{
"concat_out"
});
int
axis
=
0
;
desc
.
SetAttr
(
"axis"
,
axis
);
validator
.
SetOp
(
*
desc
.
Proto
());
validator
.
Execute
(
1
);
}
}
// namespace anakin
}
// namespace anakin
}
// namespace inference
}
// namespace inference
}
// namespace paddle
}
// namespace paddle
...
...
paddle/fluid/inference/anakin/convert/test_flatten_op.cc
浏览文件 @
a1d200a5
...
@@ -27,13 +27,13 @@ TEST(flatten_op, test) {
...
@@ -27,13 +27,13 @@ TEST(flatten_op, test) {
std
::
unordered_set
<
std
::
string
>
parameters
;
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
scope
);
validator
.
DeclInputVar
(
"flatten-X"
,
{
3
,
10
0
,
10
0
,
4
});
validator
.
DeclInputVar
(
"flatten-X"
,
{
3
,
10
,
1
0
,
4
});
validator
.
DeclOutputVar
(
"flatten-Out"
,
{
1
,
300
,
400
,
1
});
validator
.
DeclOutputVar
(
"flatten-Out"
,
{
3
,
400
,
1
,
1
});
framework
::
OpDesc
desc
;
framework
::
OpDesc
desc
;
desc
.
SetType
(
"flatten"
);
desc
.
SetType
(
"flatten"
);
desc
.
SetInput
(
"X"
,
{
"flatten-X"
});
desc
.
SetInput
(
"X"
,
{
"flatten-X"
});
desc
.
SetOutput
(
"Out"
,
{
"flatten-Out"
});
desc
.
SetOutput
(
"Out"
,
{
"flatten-Out"
});
desc
.
SetAttr
(
"axis"
,
2
);
desc
.
SetAttr
(
"axis"
,
1
);
LOG
(
INFO
)
<<
"set OP"
;
LOG
(
INFO
)
<<
"set OP"
;
validator
.
SetOp
(
*
desc
.
Proto
());
validator
.
SetOp
(
*
desc
.
Proto
());
...
...
paddle/fluid/inference/anakin/convert/test_reshape_op.cc
浏览文件 @
a1d200a5
...
@@ -45,6 +45,27 @@ TEST(reshape, test) {
...
@@ -45,6 +45,27 @@ TEST(reshape, test) {
validator
.
Execute
(
1
);
validator
.
Execute
(
1
);
}
}
TEST
(
reshape
,
test2
)
{
framework
::
Scope
scope
;
std
::
unordered_set
<
std
::
string
>
parameters
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
validator
.
DeclInputVar
(
"reshape-X"
,
{
1
,
2
,
4
});
validator
.
DeclOutputVar
(
"reshape-Out"
,
{
1
,
4
,
2
});
framework
::
OpDesc
desc
;
desc
.
SetType
(
"reshape"
);
desc
.
SetInput
(
"X"
,
{
"reshape-X"
});
desc
.
SetOutput
(
"Out"
,
{
"reshape-Out"
});
// desc.SetAttr("shape", std::vector<int>({3, 2, 1, 3}));
desc
.
SetAttr
(
"shape"
,
std
::
vector
<
int
>
({
0
,
-
1
,
2
}));
LOG
(
INFO
)
<<
"set OP"
;
validator
.
SetOp
(
*
desc
.
Proto
());
LOG
(
INFO
)
<<
"execute"
;
validator
.
Execute
(
1
);
}
}
// namespace anakin
}
// namespace anakin
}
// namespace inference
}
// namespace inference
}
// namespace paddle
}
// namespace paddle
...
...
paddle/fluid/inference/anakin/convert/test_softmax_op.cc
浏览文件 @
a1d200a5
...
@@ -27,9 +27,8 @@ TEST(softmax, test) {
...
@@ -27,9 +27,8 @@ TEST(softmax, test) {
std
::
unordered_set
<
std
::
string
>
parameters
;
std
::
unordered_set
<
std
::
string
>
parameters
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
AnakinConvertValidation
validator
(
parameters
,
scope
);
std
::
vector
<
int
>
tensor_shape
{
8
,
10
};
validator
.
DeclInputVar
(
"softmax-X"
,
{
1
,
10
});
validator
.
DeclInputVar
(
"softmax-X"
,
{
1
,
10
,
1
,
1
});
validator
.
DeclOutputVar
(
"softmax-Out"
,
{
1
,
10
});
validator
.
DeclOutputVar
(
"softmax-Out"
,
{
1
,
10
,
1
,
1
});
framework
::
OpDesc
desc
;
framework
::
OpDesc
desc
;
desc
.
SetType
(
"softmax"
);
desc
.
SetType
(
"softmax"
);
...
...
paddle/fluid/inference/anakin/convert/test_transpose_op.cc
浏览文件 @
a1d200a5
...
@@ -43,6 +43,28 @@ TEST(transpose_op, test) {
...
@@ -43,6 +43,28 @@ TEST(transpose_op, test) {
validator
.
Execute
(
3
);
validator
.
Execute
(
3
);
}
}
// test input shape's dims < 4
TEST
(
transpose_op
,
test2
)
{
std
::
unordered_set
<
std
::
string
>
parameters
;
framework
::
Scope
scope
;
AnakinConvertValidation
validator
(
parameters
,
scope
);
validator
.
DeclInputVar
(
"transpose-X"
,
{
3
,
4
,
5
});
validator
.
DeclOutputVar
(
"transpose-Out"
,
{
3
,
5
,
4
});
// Prepare Op description
framework
::
OpDesc
desc
;
desc
.
SetType
(
"transpose"
);
desc
.
SetInput
(
"X"
,
{
"transpose-X"
});
desc
.
SetOutput
(
"Out"
,
{
"transpose-Out"
});
desc
.
SetAttr
(
"axis"
,
std
::
vector
<
int
>
({
0
,
2
,
1
}));
LOG
(
INFO
)
<<
"set OP"
;
validator
.
SetOp
(
*
desc
.
Proto
());
LOG
(
INFO
)
<<
"execute"
;
validator
.
Execute
(
1
);
}
}
// namespace anakin
}
// namespace anakin
}
// namespace inference
}
// namespace inference
}
// namespace paddle
}
// namespace paddle
...
...
paddle/fluid/inference/anakin/convert/transpose.cc
浏览文件 @
a1d200a5
...
@@ -40,6 +40,11 @@ void TransposeOpConverter::operator()(const framework::proto::OpDesc &op,
...
@@ -40,6 +40,11 @@ void TransposeOpConverter::operator()(const framework::proto::OpDesc &op,
engine_
->
AddOp
(
op_name
,
"Permute"
,
{
input
},
{
output
});
engine_
->
AddOp
(
op_name
,
"Permute"
,
{
input
},
{
output
});
auto
axis
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"axis"
));
auto
axis
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"axis"
));
size_t
axis_size
=
axis
.
size
();
while
(
axis
.
size
()
<
4
)
{
axis
.
push_back
(
axis_size
);
axis_size
+=
1
;
}
engine_
->
AddOpAttr
<
PTuple
<
int
>>
(
op_name
,
"dims"
,
axis
);
engine_
->
AddOpAttr
<
PTuple
<
int
>>
(
op_name
,
"dims"
,
axis
);
}
}
...
...
paddle/fluid/inference/anakin/convert/ut_helper.h
浏览文件 @
a1d200a5
...
@@ -127,6 +127,9 @@ class AnakinConvertValidation {
...
@@ -127,6 +127,9 @@ class AnakinConvertValidation {
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope_
,
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope_
,
input
);
input
);
auto
t_shape
=
framework
::
vectorize2int
(
t
.
dims
());
auto
t_shape
=
framework
::
vectorize2int
(
t
.
dims
());
while
(
t_shape
.
size
()
<
4
)
{
t_shape
.
push_back
(
1
);
}
engine_
->
SetInputShape
(
input
,
t_shape
);
engine_
->
SetInputShape
(
input
,
t_shape
);
}
}
engine_
->
Optimize
();
engine_
->
Optimize
();
...
...
paddle/fluid/inference/anakin/op_teller.cc
浏览文件 @
a1d200a5
...
@@ -21,7 +21,7 @@ namespace anakin {
...
@@ -21,7 +21,7 @@ namespace anakin {
// Just tell by the op_types.
// Just tell by the op_types.
struct
SimpleOpTypeSetTeller
:
public
Teller
{
struct
SimpleOpTypeSetTeller
:
public
Teller
{
SimpleOpTypeSetTeller
()
{
SimpleOpTypeSetTeller
()
{
//
teller_set.insert("mul");
teller_set
.
insert
(
"mul"
);
teller_set
.
insert
(
"fc"
);
teller_set
.
insert
(
"fc"
);
teller_set
.
insert
(
"conv2d_fusion"
);
teller_set
.
insert
(
"conv2d_fusion"
);
teller_set
.
insert
(
"split"
);
teller_set
.
insert
(
"split"
);
...
@@ -30,7 +30,14 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -30,7 +30,14 @@ struct SimpleOpTypeSetTeller : public Teller {
teller_set
.
insert
(
"elementwise_add"
);
teller_set
.
insert
(
"elementwise_add"
);
teller_set
.
insert
(
"concat"
);
teller_set
.
insert
(
"concat"
);
teller_set
.
insert
(
"tanh"
);
teller_set
.
insert
(
"tanh"
);
// teller_set.insert("conv2d");
teller_set
.
insert
(
"conv2d"
);
teller_set
.
insert
(
"batch_norm"
);
teller_set
.
insert
(
"softmax"
);
teller_set
.
insert
(
"flatten2"
);
teller_set
.
insert
(
"reshape2"
);
teller_set
.
insert
(
"transpose2"
);
teller_set
.
insert
(
"density_prior_box"
);
teller_set
.
insert
(
"detection_out"
);
}
}
bool
operator
()(
const
std
::
string
&
op_type
,
bool
operator
()(
const
std
::
string
&
op_type
,
...
...
paddle/fluid/inference/analysis/ir_passes/anakin_subgraph_pass.cc
浏览文件 @
a1d200a5
...
@@ -45,7 +45,7 @@ std::unique_ptr<framework::ir::Graph> analysis::AnakinSubgraphPass::ApplyImpl(
...
@@ -45,7 +45,7 @@ std::unique_ptr<framework::ir::Graph> analysis::AnakinSubgraphPass::ApplyImpl(
return
anakin
::
OpTeller
::
Global
().
Tell
(
node
->
Op
()
->
Type
(),
*
node
->
Op
());
return
anakin
::
OpTeller
::
Global
().
Tell
(
node
->
Op
()
->
Type
(),
*
node
->
Op
());
};
};
SubGraphFuser
fuser
(
graph
.
get
(),
teller
,
0
);
SubGraphFuser
fuser
(
graph
.
get
(),
teller
,
3
/* min_subgraph_size */
);
fuser
();
fuser
();
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
auto
*
node
:
graph
->
Nodes
())
{
...
...
paddle/fluid/inference/api/CMakeLists.txt
浏览文件 @
a1d200a5
...
@@ -64,3 +64,8 @@ if (WITH_ANAKIN AND WITH_MKL) # only needed in CI
...
@@ -64,3 +64,8 @@ if (WITH_ANAKIN AND WITH_MKL) # only needed in CI
anakin_target
(
inference_anakin_api
)
anakin_target
(
inference_anakin_api
)
anakin_target
(
inference_anakin_api_shared
)
anakin_target
(
inference_anakin_api_shared
)
endif
()
endif
()
if
(
WITH_ANAKIN_SUBGRAPH
)
inference_analysis_test
(
test_anakin_model SRCS mobilenet_test.cc EXTRA_DEPS paddle_fluid
)
inference_analysis_test
(
anakin_conv_model SRCS conv_anakin_test.cc EXTRA_DEPS paddle_fluid
)
inference_analysis_test
(
life_feature_test SRCS life_feature_test.cc EXTRA_DEPS paddle_fluid
)
endif
()
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
a1d200a5
...
@@ -808,13 +808,22 @@ USE_TRT_CONVERTER(conv2d_transpose);
...
@@ -808,13 +808,22 @@ USE_TRT_CONVERTER(conv2d_transpose);
USE_TRT_CONVERTER
(
leaky_relu
);
USE_TRT_CONVERTER
(
leaky_relu
);
#endif
#endif
USE_ANAKIN_CONVERTER
(
mul
);
USE_ANAKIN_CONVERTER
(
fc
);
USE_ANAKIN_CONVERTER
(
fc
);
USE_ANAKIN_CONVERTER
(
conv2d
);
USE_ANAKIN_CONVERTER
(
conv2d
);
USE_ANAKIN_CONVERTER
(
conv2d_fusion
);
USE_ANAKIN_CONVERTER
(
concat
);
USE_ANAKIN_CONVERTER
(
concat
);
USE_ANAKIN_CONVERTER
(
split
);
USE_ANAKIN_CONVERTER
(
split
);
USE_ANAKIN_CONVERTER
(
relu
);
USE_ANAKIN_CONVERTER
(
relu
);
USE_ANAKIN_CONVERTER
(
sigmoid
);
USE_ANAKIN_CONVERTER
(
sigmoid
);
USE_ANAKIN_CONVERTER
(
tanh
);
USE_ANAKIN_CONVERTER
(
tanh
);
USE_ANAKIN_CONVERTER
(
pool2d
);
USE_ANAKIN_CONVERTER
(
pool2d
);
USE_ANAKIN_CONVERTER
(
conv2d_fusion
);
USE_ANAKIN_CONVERTER
(
elementwise_add
);
USE_ANAKIN_CONVERTER
(
elementwise_add
);
USE_ANAKIN_CONVERTER
(
batch_norm
);
USE_ANAKIN_CONVERTER
(
flatten
);
USE_ANAKIN_CONVERTER
(
reshape
);
USE_ANAKIN_CONVERTER
(
transpose
);
USE_ANAKIN_CONVERTER
(
softmax
);
USE_ANAKIN_CONVERTER
(
detection_out
);
USE_ANAKIN_CONVERTER
(
density_prior_box
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录