Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9dd588b4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9dd588b4
编写于
11月 10, 2016
作者:
Q
qijun
浏览文件
操作
浏览文件
下载
差异文件
fix merge conflicts
上级
61444d90
8295eb91
变更
31
隐藏空白更改
内联
并排
Showing
31 changed file
with
2129 addition
and
344 deletion
+2129
-344
.gitignore
.gitignore
+2
-0
doc/ui/api/trainer_config_helpers/layers.rst
doc/ui/api/trainer_config_helpers/layers.rst
+6
-0
paddle/cuda/include/hl_cnn.h
paddle/cuda/include/hl_cnn.h
+64
-0
paddle/cuda/include/stub/hl_cnn_stub.h
paddle/cuda/include/stub/hl_cnn_stub.h
+28
-0
paddle/cuda/src/hl_cuda_cnn.cu
paddle/cuda/src/hl_cuda_cnn.cu
+133
-1
paddle/gserver/layers/BilinearInterpLayer.cpp
paddle/gserver/layers/BilinearInterpLayer.cpp
+95
-0
paddle/gserver/layers/BilinearInterpLayer.h
paddle/gserver/layers/BilinearInterpLayer.h
+46
-0
paddle/gserver/layers/ConvBaseLayer.cpp
paddle/gserver/layers/ConvBaseLayer.cpp
+57
-17
paddle/gserver/layers/ConvBaseLayer.h
paddle/gserver/layers/ConvBaseLayer.h
+3
-0
paddle/gserver/layers/ExpandConvBaseLayer.cpp
paddle/gserver/layers/ExpandConvBaseLayer.cpp
+263
-0
paddle/gserver/layers/ExpandConvBaseLayer.h
paddle/gserver/layers/ExpandConvBaseLayer.h
+85
-0
paddle/gserver/layers/ExpandConvLayer.cpp
paddle/gserver/layers/ExpandConvLayer.cpp
+11
-248
paddle/gserver/layers/ExpandConvLayer.h
paddle/gserver/layers/ExpandConvLayer.h
+4
-51
paddle/gserver/layers/ExpandConvTransLayer.cpp
paddle/gserver/layers/ExpandConvTransLayer.cpp
+92
-0
paddle/gserver/layers/ExpandConvTransLayer.h
paddle/gserver/layers/ExpandConvTransLayer.h
+44
-0
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+8
-0
paddle/gserver/tests/test_ConvTrans.cpp
paddle/gserver/tests/test_ConvTrans.cpp
+246
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+63
-0
paddle/math/MathUtils.cpp
paddle/math/MathUtils.cpp
+13
-0
paddle/math/MathUtils.h
paddle/math/MathUtils.h
+7
-0
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+163
-0
paddle/math/Matrix.h
paddle/math/Matrix.h
+56
-0
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+67
-0
proto/ModelConfig.proto.m4
proto/ModelConfig.proto.m4
+12
-2
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+141
-17
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+67
-6
python/paddle/trainer_config_helpers/tests/configs/generate_protostr.sh
...trainer_config_helpers/tests/configs/generate_protostr.sh
+2
-2
python/paddle/trainer_config_helpers/tests/configs/img_trans_layers.py
.../trainer_config_helpers/tests/configs/img_trans_layers.py
+22
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
..._helpers/tests/configs/protostr/img_trans_layers.protostr
+176
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
...pers/tests/configs/protostr/test_bilinear_interp.protostr
+123
-0
python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py
...iner_config_helpers/tests/configs/test_bilinear_interp.py
+30
-0
未找到文件。
.gitignore
浏览文件 @
9dd588b4
...
...
@@ -5,4 +5,6 @@ build/
.vscode
.idea
.project
.cproject
.pydevproject
Makefile
doc/ui/api/trainer_config_helpers/layers.rst
浏览文件 @
9dd588b4
...
...
@@ -287,6 +287,12 @@ interpolation_layer
:members: interpolation_layer
:noindex:
bilinear_interp_layer
----------------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: bilinear_interp_layer
:noindex:
power_layer
-----------
.. automodule:: paddle.trainer_config_helpers.layers
...
...
paddle/cuda/include/hl_cnn.h
浏览文件 @
9dd588b4
...
...
@@ -246,6 +246,70 @@ extern void hl_CMRNorm_backward(
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
);
/**
* @brief Bilinear interpolation forward.
*
* @param[in] inData input value.
* @param[in] inImgH input image height.
* @param[in] inImgW input image width.
* @param[in] inputH input batchSize.
* @param[in] inputW input image data dim.
* @param[out] outData output value.
* @param[in] outImgH output image height.
* @param[in] outImgW output image width.
* @param[in] outputH output batchSize.
* @param[in] outputW output image data dim.
* @param[in] numChannels number of channels.
* @param[in] ratioH inImgH / outImgH.
* @param[in] ratioW inImgW / outImgW.
*
*/
extern
void
hl_bilinear_forward
(
const
real
*
inData
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
real
*
outData
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
/**
* @brief Bilinear interpolation backward.
*
* @param[out] inGrad input gradient.
* @param[in] inImgH input image height.
* @param[in] inImgW input image width.
* @param[in] inputH input batchSize.
* @param[in] inputW input image data dim.
* @param[in] outGrad output gradient.
* @param[in] outImgH output image height.
* @param[in] outImgW output image width.
* @param[in] outputH output batchSize.
* @param[in] outputW output image data dim.
* @param[in] numChannels number of channels.
* @param[in] ratioH inImgH / outImgH.
* @param[in] ratioW inImgW / outImgW.
*
*/
extern
void
hl_bilinear_backward
(
real
*
inGrad
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
const
real
*
outGrad
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
/**
* @brief MaxOut forward.
*
...
...
paddle/cuda/include/stub/hl_cnn_stub.h
浏览文件 @
9dd588b4
...
...
@@ -91,6 +91,34 @@ inline void hl_CMRNorm_backward(
size_t
channels
,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
)
{}
inline
void
hl_bilinear_forward
(
const
real
*
inData
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
real
*
outData
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{}
inline
void
hl_bilinear_backward
(
real
*
inGrad
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
const
real
*
outGrad
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{}
inline
void
hl_maxout_forward
(
const
real
*
inData
,
real
*
outData
,
int
*
idData
,
size_t
batchSize
,
size_t
size
,
size_t
featLen
,
size_t
group
)
{}
...
...
paddle/cuda/src/hl_cuda_cnn.cu
浏览文件 @
9dd588b4
...
...
@@ -528,7 +528,7 @@ void hl_CMRNorm_backward(size_t frameCnt, const real* inV,
size_t
height
,
size_t
width
,
size_t
sizeX
,
real
alpha
,
real
beta
)
{
size_t
threadsNum
=
frameCnt
*
height
*
width
;
size_t
blocksX
=
(
threadsNum
+
1024
-
1
)
/
1024
;
size_t
blocksX
=
(
threadsNum
+
1024
-
1
)
/
1024
;
size_t
blocksY
=
1
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocksX
,
blocksY
);
...
...
@@ -538,6 +538,138 @@ void hl_CMRNorm_backward(size_t frameCnt, const real* inV,
CHECK_SYNC
(
"hl_CMRNorm_backward"
);
}
__global__
void
KeBilinearInterpFw
(
const
real
*
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
real
*
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
int
nthreads
=
outputH
*
outputW
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
nthreads
)
{
int
outIdH
=
tid
/
outputW
;
int
outIdW
=
tid
%
outputW
;
int
inImgSize
=
inputW
/
numChannels
;
int
outImgSize
=
outputW
/
numChannels
;
int
channelId
=
outIdW
/
outImgSize
;
int
outImgIdy
=
(
outIdW
%
outImgSize
)
/
outImgW
;
int
inImgIdy
=
ratioH
*
outImgIdy
;
int
hId
=
(
inImgIdy
<
inImgH
-
1
)
?
1
:
0
;
real
h1lambda
=
ratioH
*
outImgIdy
-
inImgIdy
;
real
h2lambda
=
1.
f
-
h1lambda
;
int
outImgIdx
=
tid
%
outImgW
;
int
inImgIdx
=
ratioW
*
outImgIdx
;
int
wId
=
(
inImgIdx
<
inImgW
-
1
)
?
1
:
0
;
real
w1lambda
=
ratioW
*
outImgIdx
-
inImgIdx
;
real
w2lambda
=
1.
f
-
w1lambda
;
const
real
*
inPos
=
&
in
[
outIdH
*
inputW
+
channelId
*
inImgSize
+
inImgIdy
*
inImgW
+
inImgIdx
];
// bilinear interpolation
out
[
outIdH
*
outputW
+
outIdW
]
=
h2lambda
*
(
w2lambda
*
inPos
[
0
]
+
w1lambda
*
inPos
[
wId
])
+
h1lambda
*
(
w2lambda
*
inPos
[
hId
*
inImgW
]
+
w1lambda
*
inPos
[
hId
*
inImgW
+
wId
]);
}
}
void
hl_bilinear_forward
(
const
real
*
inData
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
real
*
outData
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
int
threadNum
=
outputH
*
outputW
;
int
blocks
=
(
threadNum
+
1024
-
1
)
/
1024
;
KeBilinearInterpFw
<<<
blocks
,
1024
,
0
,
STREAM_DEFAULT
>>>
(
inData
,
inImgH
,
inImgW
,
inputH
,
inputW
,
outData
,
outImgH
,
outImgW
,
outputH
,
outputW
,
numChannels
,
ratioH
,
ratioW
);
CHECK_SYNC
(
"hl_bilinear_forward failed"
);
}
__global__
void
KeBilinearInterpBw
(
real
*
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
const
real
*
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
int
nthreads
=
outputH
*
outputW
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
tid
<
nthreads
)
{
int
outIdH
=
tid
/
outputW
;
int
outIdW
=
tid
%
outputW
;
int
inImgSize
=
inputW
/
numChannels
;
int
outImgSize
=
outputW
/
numChannels
;
int
channelId
=
outIdW
/
outImgSize
;
int
outImgIdy
=
(
outIdW
%
outImgSize
)
/
outImgW
;
int
inImgIdy
=
ratioH
*
outImgIdy
;
int
hId
=
(
inImgIdy
<
inImgH
-
1
)
?
1
:
0
;
real
h1lambda
=
ratioH
*
outImgIdy
-
inImgIdy
;
real
h2lambda
=
1.
f
-
h1lambda
;
int
outImgIdx
=
tid
%
outImgW
;
int
inImgIdx
=
ratioW
*
outImgIdx
;
int
wId
=
(
inImgIdx
<
inImgW
-
1
)
?
1
:
0
;
real
w1lambda
=
ratioW
*
outImgIdx
-
inImgIdx
;
real
w2lambda
=
1.
f
-
w1lambda
;
real
*
inPos
=
&
in
[
outIdH
*
inputW
+
channelId
*
inImgSize
+
inImgIdy
*
inImgW
+
inImgIdx
];
const
real
*
outPos
=
&
out
[
outIdH
*
outputW
+
outIdW
];
atomicAdd
(
&
inPos
[
0
],
h2lambda
*
w2lambda
*
outPos
[
0
]);
atomicAdd
(
&
inPos
[
wId
],
h2lambda
*
w1lambda
*
outPos
[
0
]);
atomicAdd
(
&
inPos
[
hId
*
inImgW
],
h1lambda
*
w2lambda
*
outPos
[
0
]);
atomicAdd
(
&
inPos
[
hId
*
inImgW
+
wId
],
h1lambda
*
w1lambda
*
outPos
[
0
]);
}
}
void
hl_bilinear_backward
(
real
*
inGrad
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
inputH
,
const
size_t
inputW
,
const
real
*
outGrad
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
outputH
,
const
size_t
outputW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
int
threadNum
=
outputH
*
outputW
;
int
blocks
=
(
threadNum
+
1024
-
1
)
/
1024
;
KeBilinearInterpBw
<<<
blocks
,
1024
,
0
,
STREAM_DEFAULT
>>>
(
inGrad
,
inImgH
,
inImgW
,
inputH
,
inputW
,
outGrad
,
outImgH
,
outImgW
,
outputH
,
outputW
,
numChannels
,
ratioH
,
ratioW
);
CHECK_SYNC
(
"hl_bilinear_backward failed"
);
}
__global__
void
maxoutFpCompute
(
size_t
nthreads
,
const
real
*
inData
,
real
*
outData
,
int
*
idData
,
size_t
size
,
size_t
featLen
,
size_t
groups
)
{
...
...
paddle/gserver/layers/BilinearInterpLayer.cpp
0 → 100644
浏览文件 @
9dd588b4
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "BilinearInterpLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
REGISTER_LAYER
(
bilinear_interp
,
BilinearInterpLayer
);
size_t
BilinearInterpLayer
::
getSize
()
{
inImgH_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameHeight
();
inImgW_
=
inputLayers_
[
0
]
->
getOutput
().
getFrameWidth
();
const
BilinearInterpConfig
&
conf
=
config_
.
inputs
(
0
).
bilinear_interp_conf
();
if
(
inImgH_
==
0
)
{
inImgH_
=
conf
.
img_size_y
();
}
if
(
inImgW_
==
0
)
{
inImgW_
=
conf
.
img_size_x
();
}
outImgH_
=
conf
.
out_size_y
();
outImgW_
=
conf
.
out_size_x
();
numChannels_
=
conf
.
num_channels
();
CHECK
(
outImgH_
>
0
&&
outImgW_
>
0
);
CHECK
(
inImgH_
>
0
&&
inImgW_
>
0
);
CHECK
(
numChannels_
);
ratioH_
=
(
outImgH_
>
1
)
?
static_cast
<
real
>
(
inImgH_
-
1
)
/
(
outImgH_
-
1
)
:
0.
f
;
ratioW_
=
(
outImgW_
>
1
)
?
static_cast
<
real
>
(
inImgW_
-
1
)
/
(
outImgW_
-
1
)
:
0.
f
;
getOutput
().
setFrameHeight
(
outImgH_
);
getOutput
().
setFrameWidth
(
outImgW_
);
return
outImgH_
*
outImgW_
*
numChannels_
;
}
bool
BilinearInterpLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_EQ
(
1
,
config_
.
inputs_size
());
return
true
;
}
void
BilinearInterpLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
size_t
batchSize
=
getInput
(
0
).
getBatchSize
();
size_t
size
=
getSize
();
{
REGISTER_TIMER_INFO
(
"FwResetTimer"
,
getName
().
c_str
());
resetOutput
(
batchSize
,
size
);
}
MatrixPtr
inV
=
getInputValue
(
0
);
MatrixPtr
outV
=
getOutputValue
();
{
REGISTER_TIMER_INFO
(
"FwBilinearInterpTimer"
,
getName
().
c_str
());
outV
->
bilinearForward
(
*
inV
,
inImgH_
,
inImgW_
,
outImgH_
,
outImgW_
,
numChannels_
,
ratioH_
,
ratioW_
);
}
}
void
BilinearInterpLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
(
void
)
callback
;
MatrixPtr
inputG
=
getInputGrad
(
0
);
MatrixPtr
outG
=
getOutputGrad
();
{
REGISTER_TIMER_INFO
(
"BwBilinearInterpTimer"
,
getName
().
c_str
());
if
(
inputG
)
{
inputG
->
bilinearBackward
(
*
outG
,
outImgH_
,
outImgW_
,
inImgH_
,
inImgW_
,
numChannels_
,
ratioH_
,
ratioW_
);
}
}
}
}
// namespace paddle
paddle/gserver/layers/BilinearInterpLayer.h
0 → 100644
浏览文件 @
9dd588b4
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Layer.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief A layer for bilinear interpolation which is
* used on conv layer output.
*
* @note The config file api is bilinear_interp_layer.
*/
class
BilinearInterpLayer
:
public
Layer
{
protected:
size_t
outImgH_
,
outImgW_
;
size_t
inImgH_
,
inImgW_
;
real
ratioH_
,
ratioW_
;
size_t
numChannels_
;
public:
explicit
BilinearInterpLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
virtual
~
BilinearInterpLayer
()
{}
size_t
getSize
();
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
void
forward
(
PassType
passType
);
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
);
};
}
// namespace paddle
paddle/gserver/layers/ConvBaseLayer.cpp
浏览文件 @
9dd588b4
...
...
@@ -14,12 +14,15 @@ limitations under the License. */
#include "paddle/utils/Logging.h"
#include "ConvBaseLayer.h"
#include "paddle/math/MathUtils.h"
namespace
paddle
{
bool
ConvBaseLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
isDeconv_
=
(
config_
.
type
()
==
"exconv"
||
config_
.
type
()
==
"cudnn_conv"
)
?
false
:
true
;
/* Initialize the convolutional layer parameter */
numFilters_
=
config_
.
num_filters
();
...
...
@@ -42,8 +45,20 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
outputW_
.
push_back
(
conf
.
output_x
());
}
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
size_t
height
,
width
;
height
=
filterPixels_
[
i
]
*
filterChannels_
[
i
];
width
=
(
!
isDeconv_
)
?
numFilters_
:
channels_
[
i
];
// create a new weight
CHECK_EQ
(
parameters_
[
i
]
->
getSize
(),
width
*
height
);
Weight
*
w
=
new
Weight
(
height
,
width
,
parameters_
[
i
]);
weights_
.
emplace_back
(
w
);
}
/* initialize the biases_ */
if
(
biasParameter_
.
get
()
!=
NULL
)
{
if
(
biasParameter_
.
get
())
{
if
(
sharedBiases_
)
{
CHECK_EQ
((
size_t
)
numFilters_
,
biasParameter_
->
getSize
());
biases_
=
...
...
@@ -70,23 +85,48 @@ size_t ConvBaseLayer::calOutputSize() {
clearAndReserve
(
&
outputH_
);
clearAndReserve
(
&
outputW_
);
size_t
layerSize
=
0
;
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
imgSizeH_
.
push_back
(
inputLayers_
[
i
]
->
getOutput
().
getFrameHeight
());
imgSizeW_
.
push_back
(
inputLayers_
[
i
]
->
getOutput
().
getFrameWidth
());
if
(
imgSizeH_
[
i
]
==
0
)
imgSizeH_
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
if
(
imgSizeW_
[
i
]
==
0
)
imgSizeW_
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
outputH_
.
push_back
(
outputSize
(
imgSizeH_
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
caffeMode_
));
outputW_
.
push_back
(
outputSize
(
imgSizeW_
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
],
caffeMode_
));
CHECK_EQ
(
outputH_
[
i
],
outputH_
[
0
]);
CHECK_EQ
(
outputW_
[
i
],
outputW_
[
0
]);
auto
setLayerSize
=
[
&
](
IntV
&
inH
,
IntV
&
inW
,
IntV
&
outH
,
IntV
&
outW
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
inH
.
push_back
(
inputLayers_
[
i
]
->
getOutput
().
getFrameHeight
());
inW
.
push_back
(
inputLayers_
[
i
]
->
getOutput
().
getFrameWidth
());
if
(
isDeconv_
)
{
if
(
inH
[
i
]
==
0
)
inH
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
output_x
();
if
(
inW
[
i
]
==
0
)
inW
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
output_x
();
outH
.
push_back
(
imageSize
(
inH
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
caffeMode_
));
outW
.
push_back
(
imageSize
(
inW
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
],
caffeMode_
));
}
else
{
if
(
inH
[
i
]
==
0
)
inH
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
if
(
inW
[
i
]
==
0
)
inW
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
outH
.
push_back
(
outputSize
(
inH
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
caffeMode_
));
outW
.
push_back
(
outputSize
(
inW
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
],
caffeMode_
));
}
CHECK_EQ
(
outH
[
i
],
outH
[
0
]);
CHECK_EQ
(
outW
[
i
],
outW
[
0
]);
}
getOutput
().
setFrameHeight
(
outH
[
0
]);
getOutput
().
setFrameWidth
(
outW
[
0
]);
layerSize
=
outH
[
0
]
*
outW
[
0
]
*
size_t
(
numFilters_
);
};
if
(
isDeconv_
)
{
setLayerSize
(
outputH_
,
outputW_
,
imgSizeH_
,
imgSizeW_
);
}
else
{
setLayerSize
(
imgSizeH_
,
imgSizeW_
,
outputH_
,
outputW_
);
}
getOutput
().
setFrameHeight
(
outputH_
[
0
]);
getOutput
().
setFrameWidth
(
outputW_
[
0
]);
layerSize
=
outputH_
[
0
]
*
outputW_
[
0
]
*
size_t
(
numFilters_
);
return
layerSize
;
}
...
...
paddle/gserver/layers/ConvBaseLayer.h
浏览文件 @
9dd588b4
...
...
@@ -28,6 +28,9 @@ class ConvBaseLayer : public Layer {
protected:
typedef
std
::
vector
<
int
>
IntV
;
/// True if it's deconv layer, false if it's convolution layer
bool
isDeconv_
;
/// The number of filters.
int
numFilters_
;
/// The x dimension of the padding.
...
...
paddle/gserver/layers/ExpandConvBaseLayer.cpp
0 → 100644
浏览文件 @
9dd588b4
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ExpandConvBaseLayer.h"
#include "paddle/utils/Logging.h"
namespace
paddle
{
bool
ExpandConvBaseLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
/* The class fields channels_ and numFilters_ are the same as in the config
* i.e., channels_ is the for the input and numFilters_ is for the output
*
* But in order for the variables in convTrans having the same semantic
* meaning as in conv, we need to swap channels_ and numFilters here for
* convTrans, and in other functions too.
* */
int
channel
;
int
numFilters
;
/* Initialize the projection */
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
numFilters
=
isDeconv_
?
conf
.
channels
()
:
numFilters_
;
subM_
.
push_back
(
numFilters
/
conf
.
groups
());
subN_
.
push_back
(
conf
.
output_x
()
*
conf
.
output_x
());
channel
=
isDeconv_
?
numFilters_
:
conf
.
channels
();
subK_
.
push_back
(
channel
*
conf
.
filter_size
()
*
conf
.
filter_size
()
/
conf
.
groups
());
/* Consistent caffe mode for multiple input */
caffeMode_
=
conf
.
caffe_mode
();
}
getOutputSize
();
return
true
;
}
size_t
ExpandConvBaseLayer
::
getOutputSize
()
{
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
size_t
layerSize
=
ConvBaseLayer
::
calOutputSize
();
subN_
.
clear
();
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
subN_
.
push_back
(
outputH_
[
i
]
*
outputW_
[
i
]);
}
return
layerSize
;
}
void
ExpandConvBaseLayer
::
resetExpandInput
(
size_t
height
,
size_t
width
)
{
Matrix
::
resizeOrCreate
(
expandInput_
,
height
,
width
,
false
,
useGpu_
);
}
void
ExpandConvBaseLayer
::
addSharedBias
()
{
size_t
mapW
=
getOutputSize
()
/
numFilters_
;
size_t
mapH
=
getOutputValue
()
->
getElementCnt
()
/
mapW
;
MatrixPtr
out
=
Matrix
::
create
(
getOutputValue
()
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
out
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
transOutValue_
->
addBias
(
*
bias
,
1.0
f
);
transOutValue_
->
reshape
(
mapW
,
mapH
);
transOutValue_
->
transpose
(
out
,
false
);
// false means no memory allocation
out
->
clear
();
bias
->
clear
();
}
void
ExpandConvBaseLayer
::
addUnsharedBias
()
{
MatrixPtr
outValue
=
getOutputValue
();
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
outValue
->
addBias
(
*
bias
,
1.0
f
);
}
void
ExpandConvBaseLayer
::
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
)
{
int
channel
=
isDeconv_
?
numFilters_
:
channels_
[
inIdx
];
resetExpandInput
(
subK_
[
inIdx
]
*
groups_
[
inIdx
],
subN_
[
inIdx
]);
real
*
imgData
=
image
->
getData
()
+
startIdx
*
image
->
getWidth
();
MatrixPtr
imageTmp
=
Matrix
::
create
(
imgData
,
1
,
imgSizeH_
[
inIdx
]
*
imgSizeW_
[
inIdx
]
*
channel
,
false
,
useGpu_
);
expandInput_
->
convExpand
(
*
imageTmp
,
imgSizeH_
[
inIdx
],
imgSizeW_
[
inIdx
],
channel
,
filterSize_
[
inIdx
],
filterSize_
[
inIdx
],
stride_
[
inIdx
],
stride_
[
inIdx
],
padding_
[
inIdx
],
padding_
[
inIdx
],
outputH_
[
inIdx
],
outputW_
[
inIdx
]);
imageTmp
->
clear
();
}
void
ExpandConvBaseLayer
::
expandFwdOnce
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inIdx
,
int
startIdx
)
{
int
subM
=
subM_
[
inIdx
];
int
subN
=
subN_
[
inIdx
];
int
subK
=
subK_
[
inIdx
];
expandOneFrame
(
image
,
startIdx
,
inIdx
);
int
numFilters
=
isDeconv_
?
channels_
[
inIdx
]
:
numFilters_
;
real
*
outData
=
out
->
getData
()
+
startIdx
*
subN
*
numFilters
;
real
*
wgtData
=
weights_
[
inIdx
]
->
getW
()
->
getData
();
real
*
expInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inIdx
];
++
g
)
{
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
true
,
useGpu_
);
// mark transpose
MatrixPtr
B
=
Matrix
::
create
(
expInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
outData
,
subM
,
subN
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
wgtData
+=
subK
*
subM
;
expInData
+=
subK
*
subN
;
outData
+=
subM
*
subN
;
}
}
void
ExpandConvBaseLayer
::
bpropActs
(
MatrixPtr
out
,
MatrixPtr
image
,
int
inpIdx
)
{
int
channel
=
isDeconv_
?
numFilters_
:
channels_
[
inpIdx
];
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
image
->
getHeight
();
/* reset the expand-grad memory */
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
real
*
localGradData
=
out
->
getData
();
real
*
tgtGradData
=
image
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
real
*
wgtData
=
weights_
[
inpIdx
]
->
getW
()
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
// create temporary matrix
MatrixPtr
C
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
localGradData
,
subM
,
subN
,
false
,
useGpu_
);
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
);
// mul
// clear the temporary matrix
A
->
clear
();
B
->
clear
();
C
->
clear
();
expandInData
+=
subK
*
subN
;
localGradData
+=
subM
*
subN
;
wgtData
+=
subK
*
subM
;
}
// shrink one frame outGrad
MatrixPtr
oneGradTmp
=
Matrix
::
create
(
expandInput_
->
getData
(),
subK
*
groups_
[
inpIdx
],
subN
,
false
,
useGpu_
);
MatrixPtr
vTmp
=
Matrix
::
create
(
tgtGradData
,
1
,
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channel
,
false
,
useGpu_
);
vTmp
->
convShrink
(
*
oneGradTmp
,
imgSizeH_
[
inpIdx
],
imgSizeW_
[
inpIdx
],
channel
,
filterSize_
[
inpIdx
],
filterSize_
[
inpIdx
],
stride_
[
inpIdx
],
stride_
[
inpIdx
],
padding_
[
inpIdx
],
padding_
[
inpIdx
],
outputH_
[
inpIdx
],
outputW_
[
inpIdx
],
1.0
f
,
1.0
f
);
vTmp
->
clear
();
oneGradTmp
->
clear
();
// move the data-pointer
tgtGradData
+=
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channel
;
}
}
void
ExpandConvBaseLayer
::
bpropWeights
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
)
{
MatrixPtr
weightGrad
=
weights_
[
inpIdx
]
->
getWGrad
();
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
image
->
getHeight
();
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
real
*
gradData
=
out
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
// frame by frame
// expand
expandOneFrame
(
image
,
n
,
inpIdx
);
real
*
wGradData
=
weightGrad
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
// expand-mul one-group by one
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
MatrixPtr
A
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
gradData
,
subM
,
subN
,
true
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
wGradData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
gradData
+=
subM
*
subN
;
wGradData
+=
subK
*
subM
;
expandInData
+=
subK
*
subN
;
}
}
}
void
ExpandConvBaseLayer
::
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
)
{
size_t
mapW
=
getOutputSize
()
/
numFilters_
;
size_t
mapH
=
v
->
getElementCnt
()
/
mapW
;
MatrixPtr
vTmp
=
Matrix
::
create
(
v
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
vTmp
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
biases
->
collectBias
(
*
transOutValue_
,
1.0
f
);
}
void
ExpandConvBaseLayer
::
bpropBiases
(
MatrixPtr
v
)
{
MatrixPtr
biases
=
Matrix
::
create
(
biases_
->
getWGrad
()
->
getData
(),
1
,
biases_
->
getWGrad
()
->
getElementCnt
(),
false
,
useGpu_
);
if
(
sharedBiases_
)
{
bpropSharedBias
(
biases
,
v
);
}
else
{
biases
->
collectBias
(
*
v
,
1.0
f
);
}
biases
->
clear
();
}
}
// namespace paddle
paddle/gserver/layers/ExpandConvBaseLayer.h
0 → 100644
浏览文件 @
9dd588b4
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
#include <vector>
namespace
paddle
{
/**
* @brief A subclass of ConvBaseLayer that is a superclass of both
* ExpandConvLayer and ExpandConvTransLayer
*/
class
ExpandConvBaseLayer
:
public
ConvBaseLayer
{
protected:
/// For expand convolution.
/// subM_ = numFilters_ / groups_.
IntV
subM_
;
/// subN_ = outputH_ * outputW_.
IntV
subN_
;
/// subK_ = channels_ * filterPixels_ * groups_.
IntV
subK_
;
/*The expandInput_ and transOutValue_ are used for CPU expand conv calc
* Expand one sample at a time. shape:
* (numChannels * filterPixels_, outputSizeH * outputSizeW)
* */
MatrixPtr
expandInput_
;
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr
transOutValue_
;
public:
explicit
ExpandConvBaseLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
~
ExpandConvBaseLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
size_t
getOutputSize
();
/**
* Create or resize expandInput_.
*/
void
resetExpandInput
(
size_t
height
,
size_t
width
);
/**
* Add shared bias.
*/
void
addSharedBias
();
/**
* Add unshared bias.
*/
void
addUnsharedBias
();
/**
* Expand one input sample.
*/
void
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
);
/**
* Expand one input sample and perform matrix multiplication.
*/
void
expandFwdOnce
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inIdx
,
int
startIdx
);
void
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
);
void
bpropBiases
(
MatrixPtr
v
);
void
bpropWeights
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
);
void
bpropActs
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
);
};
}
// namespace paddle
paddle/gserver/layers/ExpandConvLayer.cpp
浏览文件 @
9dd588b4
...
...
@@ -24,150 +24,29 @@ REGISTER_LAYER(exconv, ExpandConvLayer);
bool
ExpandConvLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
/* Initialize the projection */
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
subM_
.
push_back
(
numFilters_
/
conf
.
groups
());
subN_
.
push_back
(
conf
.
output_x
()
*
conf
.
output_x
());
subK_
.
push_back
(
conf
.
channels
()
*
conf
.
filter_size
()
*
conf
.
filter_size
()
/
conf
.
groups
());
/* Consistent caffe mode for multiple input */
caffeMode_
=
conf
.
caffe_mode
();
}
/* initialize the weightList */
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
size_t
height
,
width
;
height
=
filterPixels_
[
i
]
*
filterChannels_
[
i
];
width
=
numFilters_
;
// create a new weight
CHECK_EQ
(
parameters_
[
i
]
->
getSize
(),
width
*
height
);
Weight
*
w
=
new
Weight
(
height
,
width
,
parameters_
[
i
]);
weights_
.
emplace_back
(
w
);
}
ExpandConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
return
true
;
}
size_t
ExpandConvLayer
::
getOutputSize
()
{
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
size_t
layerSize
=
ConvBaseLayer
::
calOutputSize
();
subN_
.
clear
();
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
subN_
.
push_back
(
outputH_
[
i
]
*
outputW_
[
i
]);
}
return
layerSize
;
}
void
ExpandConvLayer
::
resetExpandInput
(
size_t
height
,
size_t
width
)
{
Matrix
::
resizeOrCreate
(
expandInput_
,
height
,
width
,
false
,
useGpu_
);
}
void
ExpandConvLayer
::
resetConvOutput
(
size_t
batchSize
,
int
inIdx
)
{
Matrix
::
resizeOrCreate
(
transOutValue_
,
batchSize
*
numFilters_
,
subN_
[
inIdx
],
false
,
useGpu_
);
}
void
ExpandConvLayer
::
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
)
{
resetExpandInput
(
subK_
[
inIdx
]
*
groups_
[
inIdx
],
subN_
[
inIdx
]);
real
*
imgData
=
image
->
getData
()
+
startIdx
*
image
->
getWidth
();
MatrixPtr
imageTmp
=
Matrix
::
create
(
imgData
,
1
,
imgSizeH_
[
inIdx
]
*
imgSizeW_
[
inIdx
]
*
channels_
[
inIdx
],
false
,
useGpu_
);
expandInput_
->
convExpand
(
*
imageTmp
,
imgSizeH_
[
inIdx
],
imgSizeW_
[
inIdx
],
channels_
[
inIdx
],
filterSize_
[
inIdx
],
filterSize_
[
inIdx
],
stride_
[
inIdx
],
stride_
[
inIdx
],
padding_
[
inIdx
],
padding_
[
inIdx
],
outputH_
[
inIdx
],
outputW_
[
inIdx
]);
imageTmp
->
clear
();
}
void
ExpandConvLayer
::
expandFwdOnce
(
MatrixPtr
image
,
int
inIdx
,
int
startIdx
)
{
int
subM
=
subM_
[
inIdx
];
int
subN
=
subN_
[
inIdx
];
int
subK
=
subK_
[
inIdx
];
expandOneFrame
(
image
,
startIdx
,
inIdx
);
real
*
outData
=
getOutputValue
()
->
getData
()
+
startIdx
*
subN
*
numFilters_
;
real
*
wgtData
=
weights_
[
inIdx
]
->
getW
()
->
getData
();
real
*
expInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inIdx
];
++
g
)
{
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
true
,
useGpu_
);
// mark transpose
MatrixPtr
B
=
Matrix
::
create
(
expInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
outData
,
subM
,
subN
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
wgtData
+=
subK
*
subM
;
expInData
+=
subK
*
subN
;
outData
+=
subM
*
subN
;
}
}
void
ExpandConvLayer
::
addSharedBias
()
{
size_t
mapW
=
getOutputValue
()
->
getWidth
()
/
numFilters_
;
size_t
mapH
=
getOutputValue
()
->
getElementCnt
()
/
mapW
;
MatrixPtr
out
=
Matrix
::
create
(
getOutputValue
()
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
out
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
transOutValue_
->
addBias
(
*
bias
,
1.0
f
);
transOutValue_
->
reshape
(
mapW
,
mapH
);
transOutValue_
->
transpose
(
out
,
false
);
// false means no memory allocation
out
->
clear
();
bias
->
clear
();
}
void
ExpandConvLayer
::
addUnsharedBias
()
{
MatrixPtr
outValue
=
getOutputValue
();
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
outValue
->
addBias
(
*
bias
,
1.0
f
);
}
void
ExpandConvLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
/* malloc memory for the output_ if necessary */
/* note: one sample correspond to one colum, and the
* transOutValue correspond sample to one row */
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getWidth
();
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
resetOutput
(
batchSize
,
getOutputSize
());
MatrixPtr
image
=
nullptr
;
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
MatrixPtr
outV
=
getOutputValue
();
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
LayerPtr
prevLayer
=
getPrev
(
i
);
image
=
prevLayer
->
getOutputValue
();
for
(
size_t
off
=
0
;
off
<
image
->
getHeight
();
off
++
)
{
REGISTER_TIMER_INFO
(
"expandFwdOnce"
,
getName
().
c_str
());
expandFwdOnce
(
image
,
i
,
off
);
expandFwdOnce
(
image
,
outV
,
i
,
off
);
}
}
/* add the bias-vector */
if
(
biases_
.
get
()
!=
NULL
)
{
if
(
biases_
.
get
())
{
if
(
sharedBiases_
)
{
addSharedBias
();
}
else
{
...
...
@@ -179,29 +58,6 @@ void ExpandConvLayer::forward(PassType passType) {
forwardActivation
();
}
void
ExpandConvLayer
::
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
)
{
size_t
mapW
=
v
->
getWidth
()
/
numFilters_
;
size_t
mapH
=
v
->
getElementCnt
()
/
mapW
;
MatrixPtr
vTmp
=
Matrix
::
create
(
v
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
vTmp
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
vTmp
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
biases
->
collectBias
(
*
vTmp
,
1.0
f
);
}
void
ExpandConvLayer
::
bpropBiases
(
MatrixPtr
v
)
{
MatrixPtr
biases
=
Matrix
::
create
(
biases_
->
getWGrad
()
->
getData
(),
1
,
biases_
->
getWGrad
()
->
getElementCnt
(),
false
,
useGpu_
);
if
(
sharedBiases_
)
{
bpropSharedBias
(
biases
,
v
);
}
else
{
biases
->
collectBias
(
*
v
,
1.0
f
);
}
biases
->
clear
();
}
void
ExpandConvLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
...
...
@@ -213,111 +69,18 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
/* First, calculate the input layers error */
bpropActs
(
outGrad
,
i
);
if
(
getPrev
(
i
)
->
getOutputGrad
())
{
bpropActs
(
outGrad
,
getPrev
(
i
)
->
getOutputGrad
(),
i
);
}
if
(
weights_
[
i
]
->
getWGrad
())
{
/* Then, calculate the W-gradient for the current layer */
bpropWeights
(
outGrad
,
i
);
bpropWeights
(
getPrev
(
i
)
->
getOutputValue
(),
outGrad
,
i
);
/* Increasing the number of gradient */
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
void
ExpandConvLayer
::
bpropWeights
(
MatrixPtr
v
,
int
inpIdx
)
{
MatrixPtr
weightGrad
=
weights_
[
inpIdx
]
->
getWGrad
();
MatrixPtr
inputV
=
getPrev
(
inpIdx
)
->
getOutputValue
();
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
inputV
->
getHeight
();
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
resetConvOutput
(
batchSize
,
inpIdx
);
real
*
gradData
=
v
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
// frame by frame
// expand
expandOneFrame
(
inputV
,
n
,
inpIdx
);
real
*
wGradData
=
weightGrad
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
// expand-mul one-group by one
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
MatrixPtr
A
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
gradData
,
subM
,
subN
,
true
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
wGradData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
gradData
+=
subM
*
subN
;
wGradData
+=
subK
*
subM
;
expandInData
+=
subK
*
subN
;
}
}
}
void
ExpandConvLayer
::
bpropActs
(
MatrixPtr
v
,
int
inpIdx
)
{
LayerPtr
prevLayer
=
getPrev
(
inpIdx
);
if
(
NULL
==
prevLayer
->
getOutputGrad
())
{
return
;
}
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
v
->
getHeight
();
MatrixPtr
tgtGrad
=
prevLayer
->
getOutputGrad
();
/* reset the expand-grad memory */
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
resetConvOutput
(
batchSize
,
inpIdx
);
real
*
localGradData
=
v
->
getData
();
real
*
tgtGradData
=
tgtGrad
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
real
*
wgtData
=
weights_
[
inpIdx
]
->
getW
()
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
// create temporary matrix
MatrixPtr
C
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
localGradData
,
subM
,
subN
,
false
,
useGpu_
);
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
);
// mul
// clear the temporary matrix
A
->
clear
();
B
->
clear
();
C
->
clear
();
expandInData
+=
subK
*
subN
;
localGradData
+=
subM
*
subN
;
wgtData
+=
subK
*
subM
;
}
// shrink one frame outGrad
MatrixPtr
oneGradTmp
=
Matrix
::
create
(
expandInput_
->
getData
(),
subK
*
groups_
[
inpIdx
],
subN
,
false
,
useGpu_
);
MatrixPtr
vTmp
=
Matrix
::
create
(
tgtGradData
,
1
,
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channels_
[
inpIdx
],
false
,
useGpu_
);
vTmp
->
convShrink
(
*
oneGradTmp
,
imgSizeH_
[
inpIdx
],
imgSizeW_
[
inpIdx
],
channels_
[
inpIdx
],
filterSize_
[
inpIdx
],
filterSize_
[
inpIdx
],
stride_
[
inpIdx
],
stride_
[
inpIdx
],
padding_
[
inpIdx
],
padding_
[
inpIdx
],
outputH_
[
inpIdx
],
outputW_
[
inpIdx
],
1.0
f
,
1.0
f
);
vTmp
->
clear
();
oneGradTmp
->
clear
();
// move the data-pointer
tgtGradData
+=
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channels_
[
inpIdx
];
}
}
}
// namespace paddle
paddle/gserver/layers/ExpandConvLayer.h
浏览文件 @
9dd588b4
...
...
@@ -15,9 +15,9 @@ limitations under the License. */
#pragma once
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
#include <vector>
#include "ExpandConvBaseLayer.h"
namespace
paddle
{
...
...
@@ -28,65 +28,18 @@ namespace paddle {
*
* The config file api is img_conv_layer.
*/
class
ExpandConvLayer
:
public
ConvBaseLayer
{
protected:
/// For expand convolution.
/// subM_ = numFilters_ / groups_.
IntV
subM_
;
/// subN_ = outputH_ * outputW_.
IntV
subN_
;
/// subK_ = channels_ * filterPixels_ * groups_.
IntV
subK_
;
/// Expand one sample at a time. shape:
/// (numChannels * filterPixels_, outputSizeH * outputSizeW)
MatrixPtr
expandInput_
;
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr
transOutValue_
;
class
ExpandConvLayer
:
public
ExpandConvBaseLayer
{
public:
explicit
ExpandConvLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
explicit
ExpandConvLayer
(
const
LayerConfig
&
config
)
:
ExpandConvBaseLayer
(
config
)
{}
~
ExpandConvLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
size_t
getOutputSize
();
/**
* Create or resize expandInput_.
*/
void
resetExpandInput
(
size_t
height
,
size_t
width
);
/**
* Create or resize transOutValue_.
*/
void
resetConvOutput
(
size_t
batchSize
,
int
inIdx
);
/**
* Expand one input sample.
*/
void
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
);
/**
* Expand one input sample and perform matrix multiplication.
*/
void
expandFwdOnce
(
MatrixPtr
image
,
int
inIdx
,
int
startIdx
);
/**
* Add shared bias.
*/
void
addSharedBias
();
/**
* Add unshared bias.
*/
void
addUnsharedBias
();
void
forward
(
PassType
passType
);
void
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
);
void
bpropBiases
(
MatrixPtr
v
);
void
backward
(
const
UpdateCallback
&
callback
);
void
bpropWeights
(
MatrixPtr
v
,
int
inpIdx
);
void
bpropActs
(
MatrixPtr
v
,
int
inpIdx
);
};
}
// namespace paddle
paddle/gserver/layers/ExpandConvTransLayer.cpp
0 → 100644
浏览文件 @
9dd588b4
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "ExpandConvTransLayer.h"
/* The implementation of the convTransLayer is basically a swap of forward and
* backward of the original convLayer.
* The variable naming follows the convention of the convLayer.
* */
namespace
paddle
{
REGISTER_LAYER
(
exconvt
,
ExpandConvTransLayer
);
bool
ExpandConvTransLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ExpandConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
return
true
;
}
void
ExpandConvTransLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
/* malloc memory for the output_ if necessary */
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
resetOutput
(
batchSize
,
getOutputSize
());
MatrixPtr
output
=
nullptr
;
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
LayerPtr
prevLayer
=
getPrev
(
i
);
output
=
prevLayer
->
getOutputValue
();
REGISTER_TIMER_INFO
(
"shrinkFwd"
,
getName
().
c_str
());
bpropActs
(
output
,
getOutputValue
(),
i
);
}
/* add the bias-vector */
if
(
biases_
.
get
())
{
if
(
sharedBiases_
)
{
addSharedBias
();
}
else
{
addUnsharedBias
();
}
}
/* activation */
forwardActivation
();
}
void
ExpandConvTransLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
MatrixPtr
imageGrad
=
getOutputGrad
();
if
(
biases_
&&
biases_
->
getWGrad
())
{
bpropBiases
(
imageGrad
);
/* Increasing the number of gradient */
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
/* First, calculate the input layers error */
for
(
size_t
off
=
0
;
off
<
imageGrad
->
getHeight
();
off
++
)
{
if
(
getPrev
(
i
)
->
getOutputGrad
())
{
expandFwdOnce
(
imageGrad
,
getPrev
(
i
)
->
getOutputGrad
(),
i
,
off
);
}
}
if
(
weights_
[
i
]
->
getWGrad
())
{
/* Then, calculate the W-gradient for the current layer */
bpropWeights
(
imageGrad
,
getPrev
(
i
)
->
getOutputValue
(),
i
);
/* Increasing the number of gradient */
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
}
// namespace paddle
paddle/gserver/layers/ExpandConvTransLayer.h
0 → 100644
浏览文件 @
9dd588b4
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/math/Matrix.h"
#include <vector>
#include "ExpandConvBaseLayer.h"
namespace
paddle
{
/**
* @brief A subclass of convolution layer.
* This layer expands input and use matrix multiplication to
* calculate convolution transpose (deconv) operation.
*
* The config file api is img_conv_layer with flag trans=True.
*/
class
ExpandConvTransLayer
:
public
ExpandConvBaseLayer
{
public:
explicit
ExpandConvTransLayer
(
const
LayerConfig
&
config
)
:
ExpandConvBaseLayer
(
config
)
{}
~
ExpandConvTransLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
void
forward
(
PassType
passType
);
void
backward
(
const
UpdateCallback
&
callback
);
};
}
// namespace paddle
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
9dd588b4
...
...
@@ -26,6 +26,14 @@ add_unittest_without_exec(test_ActivationGrad
TestUtil.cpp
)
add_test
(
NAME test_ActivationGrad
COMMAND test_ActivationGrad
)
################# test_ConvTrans #######################
add_unittest_without_exec
(
test_ConvTrans
test_ConvTrans.cpp
LayerGradUtil.cpp
TestUtil.cpp
)
add_test
(
NAME test_ConvTrans
COMMAND test_ConvTrans
)
################## test_Evaluator #######################
add_unittest
(
test_Evaluator
...
...
paddle/gserver/tests/test_ConvTrans.cpp
0 → 100644
浏览文件 @
9dd588b4
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <vector>
#include <string>
#include "paddle/gserver/layers/DataLayer.h"
#include "ModelConfig.pb.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/GlobalConstants.h"
#include "paddle/gserver/layers/ExpandConvTransLayer.h"
#include "paddle/math/MathUtils.h"
#include "TestUtil.h"
#include "LayerGradUtil.h"
using
namespace
paddle
;
// NOLINT
using
namespace
std
;
// NOLINT
P_DECLARE_bool
(
use_gpu
);
P_DECLARE_int32
(
gpu_id
);
P_DECLARE_double
(
checkgrad_eps
);
P_DECLARE_bool
(
thread_local_rand_use_global_seed
);
P_DECLARE_bool
(
prev_batch_state
);
// Test that the convTrans forward is the same as conv backward
TEST
(
Layer
,
convTransLayerFwd
)
{
// Setting up conv-trans layer
TestConfig
configt
;
configt
.
biasSize
=
3
;
configt
.
layerConfig
.
set_type
(
"exconvt"
);
configt
.
layerConfig
.
set_num_filters
(
3
);
configt
.
layerConfig
.
set_partial_sum
(
1
);
configt
.
layerConfig
.
set_shared_biases
(
true
);
configt
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1024
,
384
});
LayerInputConfig
*
input
=
configt
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
conv
->
set_filter_size_y
(
4
);
conv
->
set_channels
(
16
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
3
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
configt
.
layerConfig
.
set_size
(
conv
->
img_size
()
*
conv
->
img_size
()
*
configt
.
layerConfig
.
num_filters
());
configt
.
layerConfig
.
set_name
(
"convTrans"
);
// data layer initialize
std
::
vector
<
DataLayerPtr
>
dataLayers
;
LayerMap
layerMap
;
vector
<
Argument
>
datas
;
initDataLayer
(
configt
,
&
dataLayers
,
&
datas
,
&
layerMap
,
"convTrans"
,
100
,
false
,
false
);
// test layer initialize
std
::
vector
<
ParameterPtr
>
parameters
;
LayerPtr
convtLayer
;
initTestLayer
(
configt
,
&
layerMap
,
&
parameters
,
&
convtLayer
);
convtLayer
->
getBiasParameter
()
->
zeroMem
();
convtLayer
->
forward
(
PASS_GC
);
// Setting up conv-layer config
TestConfig
config
;
config
.
biasSize
=
16
;
config
.
layerConfig
.
set_type
(
"exconv"
);
config
.
layerConfig
.
set_num_filters
(
16
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
768
,
384
});
input
=
config
.
layerConfig
.
add_inputs
();
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
conv
->
set_filter_size_y
(
4
);
conv
->
set_channels
(
3
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_x
()
*
config
.
layerConfig
.
num_filters
());
config
.
layerConfig
.
set_name
(
"conv"
);
// data layer initialize
std
::
vector
<
DataLayerPtr
>
dataLayers2
;
LayerMap
layerMap2
;
vector
<
Argument
>
datas2
;
initDataLayer
(
config
,
&
dataLayers2
,
&
datas2
,
&
layerMap2
,
"conv"
,
100
,
false
,
false
);
// test layer initialize
std
::
vector
<
ParameterPtr
>
parameters2
;
LayerPtr
convLayer
;
initTestLayer
(
config
,
&
layerMap2
,
&
parameters2
,
&
convLayer
);
// Sync convLayer and convtLayer parameter
convLayer
->
getBiasParameter
()
->
zeroMem
();
convLayer
->
getParameters
()[
0
]
->
getBuf
(
PARAMETER_VALUE
)
->
copyFrom
(
*
(
convtLayer
->
getParameters
()[
0
]
->
getBuf
(
PARAMETER_VALUE
)));
// Set convLayer outputGrad as convTransLayer input value
convLayer
->
forward
(
PASS_GC
);
convLayer
->
getOutput
().
grad
->
copyFrom
(
*
(
dataLayers
[
0
]
->
getOutputValue
()));
vector
<
int
>
callbackFlags
(
parameters2
.
size
(),
0
);
auto
callback
=
[
&
](
Parameter
*
para
)
{
++
callbackFlags
[
para
->
getID
()];
};
convLayer
->
backward
(
callback
);
// Check that the convLayer backward is the same as convTransLayer forward
checkMatrixEqual
(
convtLayer
->
getOutputValue
(),
dataLayers2
[
0
]
->
getOutputGrad
());
}
// Do one forward pass of convTrans layer and check to see if its output
// matches the given result
void
doOneConvtTest
(
size_t
imgSize
,
size_t
output_x
,
size_t
stride
,
size_t
padding
,
size_t
filter_size
,
MatrixPtr
&
result
)
{
TestConfig
configt
;
configt
.
biasSize
=
1
;
configt
.
layerConfig
.
set_type
(
"exconvt"
);
configt
.
layerConfig
.
set_num_filters
(
1
);
configt
.
layerConfig
.
set_partial_sum
(
1
);
configt
.
layerConfig
.
set_shared_biases
(
true
);
configt
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
output_x
*
output_x
,
filter_size
*
filter_size
});
LayerInputConfig
*
input
=
configt
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
filter_size
);
conv
->
set_filter_size_y
(
filter_size
);
conv
->
set_channels
(
1
);
conv
->
set_padding
(
padding
);
conv
->
set_padding_y
(
padding
);
conv
->
set_stride
(
stride
);
conv
->
set_stride_y
(
stride
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
1
);
conv
->
set_img_size
(
imgSize
);
conv
->
set_output_x
(
output_x
);
configt
.
layerConfig
.
set_size
(
conv
->
img_size
()
*
conv
->
img_size
()
*
configt
.
layerConfig
.
num_filters
());
configt
.
layerConfig
.
set_name
(
"convTrans"
);
std
::
vector
<
DataLayerPtr
>
dataLayers
;
LayerMap
layerMap
;
vector
<
Argument
>
datas
;
initDataLayer
(
configt
,
&
dataLayers
,
&
datas
,
&
layerMap
,
"convTrans"
,
1
,
false
,
false
);
dataLayers
[
0
]
->
getOutputValue
()
->
zeroMem
();
dataLayers
[
0
]
->
getOutputValue
()
->
add
(
1.0
);
// test layer initialize
std
::
vector
<
ParameterPtr
>
parameters
;
LayerPtr
convtLayer
;
initTestLayer
(
configt
,
&
layerMap
,
&
parameters
,
&
convtLayer
);
convtLayer
->
getBiasParameter
()
->
zeroMem
();
convtLayer
->
getParameters
()[
0
]
->
zeroMem
();
convtLayer
->
getParameters
()[
0
]
->
getBuf
(
PARAMETER_VALUE
)
->
add
(
1.0
);
convtLayer
->
forward
(
PASS_GC
);
checkMatrixEqual
(
convtLayer
->
getOutputValue
(),
result
);
}
TEST
(
Layer
,
convTransLayerFwd2
)
{
MatrixPtr
result
;
result
=
Matrix
::
create
(
1
,
5
*
5
,
false
,
false
);
result
->
zeroMem
();
result
->
add
(
1.0
);
doOneConvtTest
(
/* imgSize */
5
,
/* output_x */
1
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
5
,
result
);
float
resultData
[]
=
{
1
,
2
,
2
,
2
,
1
,
2
,
4
,
4
,
4
,
2
,
2
,
4
,
4
,
4
,
2
,
2
,
4
,
4
,
4
,
2
,
1
,
2
,
2
,
2
,
1
};
result
->
setData
(
resultData
);
doOneConvtTest
(
/* imgSize */
5
,
/* output_x */
2
,
/* stride */
1
,
/* padding */
0
,
/* filter_size */
4
,
result
);
float
resultData2
[]
=
{
1
,
2
,
2
,
2
,
1
,
2
,
4
,
4
,
4
,
2
,
2
,
4
,
4
,
4
,
2
,
2
,
4
,
4
,
4
,
2
,
1
,
2
,
2
,
2
,
1
};
result
->
setData
(
resultData2
);
doOneConvtTest
(
/* imgSize */
5
,
/* output_x */
2
,
/* stride */
2
,
/* padding */
1
,
/* filter_size */
5
,
result
);
float
resultData3
[]
=
{
1
,
1
,
2
,
1
,
1
,
1
,
1
,
2
,
1
,
1
,
2
,
2
,
4
,
2
,
2
,
1
,
1
,
2
,
1
,
1
,
1
,
1
,
2
,
1
,
1
};
result
->
setData
(
resultData3
);
doOneConvtTest
(
/* imgSize */
5
,
/* output_x */
2
,
/* stride */
2
,
/* padding */
0
,
/* filter_size */
3
,
result
);}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
FLAGS_thread_local_rand_use_global_seed
=
true
;
srand
(
1
);
return
RUN_ALL_TESTS
();
}
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
9dd588b4
...
...
@@ -175,6 +175,27 @@ TEST(Projection, conv) {
}
#endif
TEST
(
Layer
,
BilinearInterpLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"bilinear_interp"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
4096
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
BilinearInterpConfig
*
bilinear
=
input
->
mutable_bilinear_interp_conf
();
bilinear
->
set_img_size_x
(
32
);
bilinear
->
set_img_size_y
(
32
);
bilinear
->
set_num_channels
(
4
);
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
outSize
:
{
32
,
64
})
{
bilinear
->
set_out_size_x
(
outSize
);
bilinear
->
set_out_size_y
(
outSize
);
testLayerGrad
(
config
,
"bilinear_interp"
,
10
,
false
,
useGpu
);
}
}
}
TEST
(
Layer
,
concat
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
...
...
@@ -302,6 +323,8 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
config
.
layerConfig
.
num_filters
());
testLayerGrad
(
config
,
"conv"
,
100
,
trans
,
useGpu
);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad
(
config
,
"conv"
,
2
,
trans
,
useGpu
,
true
,
0.02
);
}
TEST
(
Layer
,
convLayer
)
{
...
...
@@ -312,6 +335,46 @@ TEST(Layer, convLayer) {
#endif
}
void
testConvTransLayer
(
const
string
&
type
,
bool
trans
,
bool
useGpu
)
{
TestConfig
config
;
config
.
biasSize
=
3
;
config
.
layerConfig
.
set_type
(
type
);
config
.
layerConfig
.
set_num_filters
(
3
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1024
,
288
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
conv
->
set_filter_size_y
(
3
);
conv
->
set_channels
(
16
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
3
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
img_size
()
*
conv
->
img_size
()
*
config
.
layerConfig
.
num_filters
());
testLayerGrad
(
config
,
"convTrans"
,
100
,
trans
,
useGpu
);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad
(
config
,
"convTrans"
,
2
,
trans
,
useGpu
,
true
,
0.02
);
}
TEST
(
Layer
,
convTransLayer
)
{
for
(
auto
useGpu
:
{
false
,
true
})
{
testConvTransLayer
(
"exconvt"
,
/* trans= */
false
,
/* useGpu= */
useGpu
);
}
}
TEST
(
Layer
,
blockExpandLayer
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
...
...
paddle/math/MathUtils.cpp
浏览文件 @
9dd588b4
...
...
@@ -80,4 +80,17 @@ int outputSize(int imageSize, int filterSize, int padding, int stride,
return
outputSize
;
}
int
imageSize
(
int
outputSize
,
int
filterSize
,
int
padding
,
int
stride
,
bool
caffeMode
)
{
int
imageSize
;
if
(
!
caffeMode
)
{
imageSize
=
(
outputSize
-
1
)
*
stride
+
filterSize
-
2
*
padding
-
stride
+
1
;
}
else
{
imageSize
=
(
outputSize
-
1
)
*
stride
+
filterSize
-
2
*
padding
;
}
CHECK_GE
(
imageSize
,
1
);
return
imageSize
;
}
}
// namespace paddle
paddle/math/MathUtils.h
浏览文件 @
9dd588b4
...
...
@@ -60,4 +60,11 @@ void sparseRand(int* major, int* minor, int nnz, int majorLen, int minorMax,
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
,
bool
caffeMode
);
/**
* Calculate image size based on output size and caffeMode_.
* It is the reverse function of outputSize()
*/
int
imageSize
(
int
outputSize
,
int
filterSize
,
int
padding
,
int
stride
,
bool
caffeMode
);
}
// namespace paddle
paddle/math/Matrix.cpp
浏览文件 @
9dd588b4
...
...
@@ -22,6 +22,7 @@ limitations under the License. */
#include <cmath>
#include <string.h>
#include "hl_cnn.h"
#include "hl_gpu.h"
#include "hl_table_apply.h"
#include "hl_top_k.h"
...
...
@@ -1211,6 +1212,62 @@ void GpuMatrix::addColumnVector(const Matrix& b) {
BaseMatrix
::
addColVector
(
const_cast
<
Matrix
&>
(
b
));
}
void
GpuMatrix
::
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
CHECK
(
dynamic_cast
<
const
GpuMatrix
*>
(
&
in
));
const
size_t
outputW
=
getWidth
();
const
size_t
outputH
=
getHeight
();
const
size_t
inputW
=
in
.
getWidth
();
const
size_t
inputH
=
in
.
getHeight
();
real
*
outData
=
getData
();
const
real
*
inData
=
in
.
getData
();
if
(
inImgH
==
outImgW
&&
inImgW
==
outImgW
)
{
this
->
copyFrom
(
in
);
}
else
{
hl_bilinear_forward
(
inData
,
inImgH
,
inImgW
,
inputH
,
inputW
,
outData
,
outImgH
,
outImgW
,
outputH
,
outputW
,
numChannels
,
ratioH
,
ratioW
);
}
}
void
GpuMatrix
::
bilinearBackward
(
const
Matrix
&
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
CHECK
(
dynamic_cast
<
const
GpuMatrix
*>
(
&
out
));
const
size_t
inputW
=
getWidth
();
const
size_t
inputH
=
getHeight
();
const
size_t
outputW
=
out
.
getWidth
();
const
size_t
outputH
=
out
.
getHeight
();
real
*
inGrad
=
getData
();
const
real
*
outGrad
=
out
.
getData
();
if
(
outImgH
==
inImgH
&&
outImgW
==
inImgW
)
{
this
->
add
(
const_cast
<
Matrix
&>
(
out
));
}
else
{
hl_bilinear_backward
(
inGrad
,
inImgH
,
inImgW
,
inputH
,
inputW
,
outGrad
,
outImgH
,
outImgW
,
outputH
,
outputW
,
numChannels
,
ratioH
,
ratioW
);
}
}
/**
* CpuMatrix
*/
...
...
@@ -3838,6 +3895,112 @@ void CpuMatrix::classificationErrorMulti(Matrix& output, Matrix& label,
}
}
void
CpuMatrix
::
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
CHECK
(
dynamic_cast
<
const
CpuMatrix
*>
(
&
in
));
size_t
outputW
=
getWidth
();
size_t
batchSize
=
getHeight
();
size_t
inputW
=
in
.
getWidth
();
size_t
inputH
=
in
.
getHeight
();
size_t
inPosOffset
=
inImgH
*
inImgW
;
size_t
outPosOffset
=
outImgH
*
outImgW
;
(
void
)(
inputH
);
real
*
outData
=
getData
();
const
real
*
inData
=
in
.
getData
();
if
(
inImgH
==
outImgH
&&
inImgW
==
outImgW
)
{
this
->
copyFrom
(
in
);
}
else
{
for
(
size_t
k
=
0
;
k
<
batchSize
;
++
k
)
{
// loop for batches
for
(
size_t
i
=
0
;
i
<
outImgH
;
++
i
)
{
// loop for images
size_t
h
=
ratioH
*
i
;
size_t
hid
=
(
h
<
inImgH
-
1
)
?
1
:
0
;
real
h1lambda
=
ratioH
*
i
-
h
;
real
h2lambda
=
1
-
h1lambda
;
for
(
size_t
j
=
0
;
j
<
outImgW
;
++
j
)
{
size_t
w
=
ratioW
*
j
;
size_t
wid
=
(
w
<
inImgW
-
1
)
?
1
:
0
;
real
w1lambda
=
ratioW
*
j
-
w
;
real
w2lambda
=
1
-
w1lambda
;
// calculate four position for bilinear interpolation
const
real
*
inPos
=
&
inData
[
k
*
inputW
+
h
*
inImgW
+
w
];
real
*
outPos
=
&
outData
[
k
*
outputW
+
i
*
outImgW
+
j
];
for
(
size_t
c
=
0
;
c
<
numChannels
;
++
c
)
{
// loop for channels
// bilinear interpolation
outPos
[
0
]
=
h2lambda
*
(
w2lambda
*
inPos
[
0
]
+
w1lambda
*
inPos
[
wid
])
+
h1lambda
*
(
w2lambda
*
inPos
[
hid
*
inImgW
]
+
w1lambda
*
inPos
[
hid
*
inImgW
+
wid
]);
inPos
+=
inPosOffset
;
outPos
+=
outPosOffset
;
}
}
}
}
}
}
void
CpuMatrix
::
bilinearBackward
(
const
Matrix
&
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
CHECK
(
dynamic_cast
<
const
CpuMatrix
*>
(
&
out
));
size_t
inputW
=
getWidth
();
size_t
inputH
=
getHeight
();
size_t
outputW
=
out
.
getWidth
();
size_t
batchSize
=
out
.
getHeight
();
size_t
inPosOffset
=
inImgH
*
inImgW
;
size_t
outPosOffset
=
outImgH
*
outImgW
;
(
void
)(
inputH
);
real
*
inGrad
=
getData
();
const
real
*
outGrad
=
out
.
getData
();
if
(
inImgH
==
outImgH
&&
inImgW
==
outImgW
)
{
this
->
add
(
const_cast
<
Matrix
&>
(
out
));
}
else
{
for
(
size_t
k
=
0
;
k
<
batchSize
;
++
k
)
{
// loop for batches
for
(
size_t
i
=
0
;
i
<
outImgH
;
++
i
)
{
// loop for images
size_t
h
=
ratioH
*
i
;
size_t
hid
=
(
h
<
inImgH
-
1
)
?
1
:
0
;
real
h1lambda
=
ratioH
*
i
-
h
;
real
h2lambda
=
1
-
h1lambda
;
for
(
size_t
j
=
0
;
j
<
outImgW
;
++
j
)
{
size_t
w
=
ratioW
*
j
;
size_t
wid
=
(
w
<
inImgW
-
1
)
?
1
:
0
;
real
w1lambda
=
ratioW
*
j
-
w
;
real
w2lambda
=
1
-
w1lambda
;
real
*
inPos
=
&
inGrad
[
k
*
inputW
+
h
*
inImgW
+
w
];
const
real
*
outPos
=
&
outGrad
[
k
*
outputW
+
i
*
outImgW
+
j
];
for
(
size_t
c
=
0
;
c
<
numChannels
;
++
c
)
{
// loop for channels
inPos
[
0
]
+=
h2lambda
*
w2lambda
*
outPos
[
0
];
inPos
[
wid
]
+=
h2lambda
*
w1lambda
*
outPos
[
0
];
inPos
[
hid
*
inImgW
]
+=
h1lambda
*
w2lambda
*
outPos
[
0
];
inPos
[
hid
*
inImgW
+
wid
]
+=
h1lambda
*
w1lambda
*
outPos
[
0
];
inPos
+=
inPosOffset
;
outPos
+=
outPosOffset
;
}
}
}
}
}
}
////////////////////////////////////////////////////////////////
// functions executed via cpu //
////////////////////////////////////////////////////////////////
...
...
paddle/math/Matrix.h
浏览文件 @
9dd588b4
...
...
@@ -995,6 +995,26 @@ public:
virtual
void
paramReluBackwardDiff
(
Matrix
&
oGrad
,
Matrix
&
data
,
Matrix
&
W
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
virtual
void
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
virtual
void
bilinearBackward
(
const
Matrix
&
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
};
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Matrix
&
mat
)
{
...
...
@@ -1265,6 +1285,24 @@ public:
int
contextLength
,
int
contextStart
,
int
totalPad
,
size_t
beginPad
);
void
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
void
bilinearBackward
(
const
Matrix
&
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
};
class
CpuMatrix
:
public
Matrix
{
...
...
@@ -1553,6 +1591,24 @@ public:
void
multiBinaryLabelCrossEntropy
(
Matrix
&
output
,
Matrix
&
label
);
void
multiBinaryLabelCrossEntropyBp
(
Matrix
&
output
,
Matrix
&
label
);
void
classificationErrorMulti
(
Matrix
&
output
,
Matrix
&
label
,
real
threshold
);
void
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
void
bilinearBackward
(
const
Matrix
&
out
,
const
size_t
outImgH
,
const
size_t
outImgW
,
const
size_t
inImgH
,
const
size_t
inImgW
,
const
size_t
numChannels
,
const
real
ratioH
,
const
real
ratioW
);
};
class
SharedCpuMatrix
:
public
CpuMatrix
{
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
9dd588b4
...
...
@@ -90,6 +90,73 @@ void MatrixCheckErr(const Matrix& matrix1, const Matrix& matrix2) {
EXPECT_EQ
(
count
,
0
)
<<
"There are "
<<
count
<<
" different element."
;
}
void
testBilinearFwdBwd
(
int
numSamples
,
int
imgSizeH
,
int
imgSizeW
,
int
channels
)
{
int
inWidth
=
imgSizeH
*
imgSizeW
*
channels
;
int
outWidth
=
2
*
imgSizeH
*
2
*
imgSizeW
*
channels
;
real
ratioH
=
0.5
;
real
ratioW
=
0.5
;
// forward
MatrixPtr
input
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
MatrixPtr
inputGpu
=
GpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
true
);
MatrixPtr
target
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
MatrixPtr
targetGpu
=
GpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
true
);
MatrixPtr
targetCheck
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
input
->
randomizeUniform
();
inputGpu
->
copyFrom
(
*
input
);
target
->
bilinearForward
(
*
input
,
imgSizeH
,
imgSizeW
,
2
*
imgSizeH
,
2
*
imgSizeW
,
channels
,
ratioH
,
ratioW
);
targetGpu
->
bilinearForward
(
*
inputGpu
,
imgSizeH
,
imgSizeW
,
2
*
imgSizeH
,
2
*
imgSizeW
,
channels
,
ratioH
,
ratioW
);
// check
targetCheck
->
copyFrom
(
*
targetGpu
);
MatrixCheckErr
(
*
target
,
*
targetCheck
);
// backward
MatrixPtr
inputGrad
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
MatrixPtr
inputGpuGrad
=
GpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
true
);
MatrixPtr
targetGrad
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
MatrixPtr
targetGpuGrad
=
GpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
true
);
MatrixPtr
targetCheckGrad
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
inputGrad
->
randomizeUniform
();
targetGrad
->
randomizeUniform
();
inputGpuGrad
->
copyFrom
(
*
inputGrad
);
targetGpuGrad
->
copyFrom
(
*
targetGrad
);
inputGrad
->
bilinearBackward
(
*
targetGrad
,
2
*
imgSizeH
,
2
*
imgSizeW
,
imgSizeH
,
imgSizeW
,
channels
,
ratioH
,
ratioW
);
inputGpuGrad
->
bilinearBackward
(
*
targetGpuGrad
,
2
*
imgSizeH
,
2
*
imgSizeW
,
imgSizeH
,
imgSizeW
,
channels
,
ratioH
,
ratioW
);
// check
targetCheckGrad
->
copyFrom
(
*
inputGpuGrad
);
MatrixCheckErr
(
*
inputGrad
,
*
targetCheckGrad
);
}
TEST
(
Matrix
,
BilinearFwdBwd
)
{
for
(
auto
numSamples
:
{
5
,
10
})
{
for
(
auto
channels
:
{
8
,
16
})
{
for
(
auto
imgSizeH
:
{
14
,
28
})
{
for
(
auto
imgSizeW
:
{
16
,
30
})
{
VLOG
(
3
)
<<
" numSamples="
<<
numSamples
<<
" channels="
<<
channels
<<
" imgSizeH="
<<
imgSizeH
<<
" imgSizeW="
<<
imgSizeW
;
testBilinearFwdBwd
(
numSamples
,
imgSizeH
,
imgSizeW
,
channels
);
}
}
}
}
}
void
testMatrixProjectionForward
(
int
contextStart
,
int
contextLength
,
bool
padding
,
int
batchSize
,
int
inputDim
)
{
MatrixPtr
cpuInput
=
std
::
make_shared
<
CpuMatrix
>
(
batchSize
,
inputDim
);
...
...
proto/ModelConfig.proto.m4
浏览文件 @
9dd588b4
...
...
@@ -223,6 +223,15 @@ message OperatorConfig {
optional int32 num_filters = 7;
}
message BilinearInterpConfig {
// The size of input feature map.
optional uint32 img_size_x = 1;
optional uint32 img_size_y = 2;
// The size of output feature map.
required uint32 out_size_x = 3;
required uint32 out_size_y = 4;
required uint32 num_channels = 5;
}
message ImageConfig {
// The image data dimensionality.
...
...
@@ -245,8 +254,9 @@ message LayerInputConfig {
// If the input layer has multi-output.
// Set the argument name.
optional string input_layer_argument = 9;
optional MaxOutConfig maxout_conf = 10;
optional SppConfig spp_conf = 11;
optional BilinearInterpConfig bilinear_interp_conf = 10;
optional MaxOutConfig maxout_conf = 11;
optional SppConfig spp_conf = 12;
}
message LayerConfig {
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
9dd588b4
...
...
@@ -465,6 +465,7 @@ class Input(Cfg):
sparse_update
=
None
,
gradient_clipping_threshold
=
None
,
conv
=
None
,
bilinear_interp
=
None
,
norm
=
None
,
pool
=
None
,
image
=
None
,
...
...
@@ -650,7 +651,8 @@ class ConvProjection(Projection):
parse_conv
(
conv_conf
,
input_layer_name
,
self
.
proj_conf
.
conv_conf
)
self
.
proj_conf
.
conv_conf
,
num_filters
)
# TODO: support rectangle input
self
.
proj_conf
.
output_size
=
(
self
.
proj_conf
.
conv_conf
.
output_x
**
2
)
*
num_filters
...
...
@@ -730,7 +732,8 @@ class ConvOperator(Operator):
parse_conv
(
conv_conf
,
MakeLayerNameInSubmodel
(
input_layer_names
[
0
]),
self
.
operator_conf
.
conv_conf
)
self
.
operator_conf
.
conv_conf
,
num_filters
)
self
.
operator_conf
.
output_size
=
(
self
.
operator_conf
.
conv_conf
.
output_x
**
2
)
*
num_filters
config_assert
(
len
(
input_layer_names
)
==
2
,
"Conv is binary operator"
)
...
...
@@ -766,6 +769,16 @@ class Conv(Cfg):
if
output_x
is
not
None
:
config_assert
(
output_x
<=
0
)
# please refer to the comments in proto/ModelConfig.proto
@
config_class
class
BilinearInterp
(
Cfg
):
def
__init__
(
self
,
out_size_x
=
None
,
out_size_y
=
None
,
num_channels
=
None
):
self
.
add_keys
(
locals
())
# please refer to the comments in proto/ModelConfig.proto
@
config_class
class
Pool
(
Cfg
):
...
...
@@ -1017,6 +1030,11 @@ def TestData(data_config, async_load_data=None):
" Data definition"
)
g_config
.
test_data_config
.
async_load_data
=
async_load_data
def
parse_bilinear
(
bilinear
,
input_layer_name
,
bilinear_conf
):
bilinear_conf
.
out_size_x
=
bilinear
.
out_size_x
;
bilinear_conf
.
out_size_y
=
bilinear
.
out_size_y
;
bilinear_conf
.
num_channels
=
bilinear
.
num_channels
;
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
...
...
@@ -1028,6 +1046,17 @@ def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
else
:
return
1
+
int
(
math
.
ceil
(
output
))
'''
calcualte image_size based on output_size for convolution.
It is the reverse function of cnn_output_size
'''
def
cnn_image_size
(
output_size
,
filter_size
,
padding
,
stride
,
caffe_mode
):
if
caffe_mode
:
img_size
=
(
output_size
-
1
)
*
stride
+
filter_size
-
2
*
padding
else
:
img_size
=
(
output_size
-
2
)
*
stride
+
filter_size
-
2
*
padding
+
1
return
img_size
def
parse_pool
(
pool
,
input_layer_name
,
pool_conf
):
pool_conf
.
pool_type
=
pool
.
pool_type
config_assert
(
pool
.
pool_type
in
[
'max-projection'
,
'avg-projection'
,
...
...
@@ -1109,7 +1138,11 @@ def parse_norm(norm, input_layer_name, norm_conf):
else
:
norm_conf
.
scale
/=
norm
.
size
**
2
def
parse_conv
(
conv
,
input_layer_name
,
conv_conf
):
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
def
parse_conv
(
conv
,
input_layer_name
,
conv_conf
,
num_filters
,
trans
=
False
):
conv_conf
.
filter_size
=
conv
.
filter_size
conv_conf
.
filter_size_y
=
conv
.
filter_size_y
conv_conf
.
channels
=
conv
.
channels
...
...
@@ -1118,20 +1151,37 @@ def parse_conv(conv, input_layer_name, conv_conf):
conv_conf
.
stride
=
conv
.
stride
conv_conf
.
stride_y
=
conv
.
stride_y
conv_conf
.
groups
=
conv
.
groups
conv_conf
.
filter_channels
=
conv
.
channels
/
conv
.
groups
conv_conf
.
caffe_mode
=
conv
.
caffe_mode
img_pixels
=
g_layer_map
[
input_layer_name
].
size
/
conv
.
channels
print
(
'channels=%d size=%d'
%
(
conv
.
channels
,
g_layer_map
[
input_layer_name
].
size
))
conv_conf
.
img_size
=
int
(
img_pixels
**
0.5
)
config_assert
((
conv_conf
.
img_size
**
2
)
==
img_pixels
,
(
"Input layer %s: Incorrect input image size %d for input "
+
"image pixels %d"
)
%
(
input_layer_name
,
conv_conf
.
img_size
,
img_pixels
))
conv_conf
.
output_x
=
cnn_output_size
(
conv_conf
.
img_size
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
if
not
trans
:
conv_conf
.
filter_channels
=
conv
.
channels
/
conv
.
groups
img_pixels
=
g_layer_map
[
input_layer_name
].
size
/
conv
.
channels
print
(
'channels=%d size=%d'
%
(
conv
.
channels
,
g_layer_map
[
input_layer_name
].
size
))
conv_conf
.
img_size
=
int
(
img_pixels
**
0.5
)
config_assert
((
conv_conf
.
img_size
**
2
)
==
img_pixels
,
(
"Input layer %s: Incorrect input image size %d for input "
+
"image pixels %d"
)
%
(
input_layer_name
,
conv_conf
.
img_size
,
img_pixels
))
conv_conf
.
output_x
=
cnn_output_size
(
conv_conf
.
img_size
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
else
:
conv_conf
.
filter_channels
=
num_filters
/
conv
.
groups
outputSize
=
g_layer_map
[
input_layer_name
].
size
/
conv
.
channels
print
(
'channels=%d size=%d'
%
(
conv
.
channels
,
g_layer_map
[
input_layer_name
].
size
))
conv_conf
.
output_x
=
int
(
outputSize
**
0.5
)
config_assert
((
conv_conf
.
output_x
**
2
)
==
outputSize
,
(
"Input layer %s: Incorrect input image size %d for input "
+
"image pixels %d"
)
%
(
input_layer_name
,
conv_conf
.
output_x
,
outputSize
))
conv_conf
.
img_size
=
cnn_image_size
(
conv_conf
.
output_x
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
def
parse_block_expand
(
block_expand
,
input_layer_name
,
block_expand_conf
):
block_expand_conf
.
channels
=
block_expand
.
channels
...
...
@@ -1614,7 +1664,8 @@ class ConvLayerBase(LayerBase):
parse_conv
(
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
conv_conf
)
self
.
config
.
inputs
[
input_index
].
conv_conf
,
num_filters
)
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
psize
=
self
.
calc_parameter_size
(
conv_conf
)
print
(
"output size for %s is %d "
%
(
name
,
conv_conf
.
output_x
))
...
...
@@ -1639,6 +1690,63 @@ class ConvLayer(ConvLayerBase):
class
ConvLayer
(
ConvLayerBase
):
layer_type
=
'cudnn_conv'
@
config_layer
(
'convt'
)
class
ConvTransLayerBase
(
LayerBase
):
layer_type
=
'convt'
def
__init__
(
self
,
name
,
inputs
=
[],
bias
=
True
,
num_filters
=
None
,
shared_biases
=
False
,
**
xargs
):
super
(
ConvTransLayerBase
,
self
).
__init__
(
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
if
num_filters
is
not
None
:
self
.
config
.
num_filters
=
num_filters
use_gpu
=
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
))
parallel_nn
=
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
))
# cudnn_convt has not been implemented so use exconvt only
self
.
layer_type
=
"exconvt"
# need to specify layer in config
self
.
config
.
type
=
self
.
layer_type
if
shared_biases
is
not
None
:
self
.
config
.
shared_biases
=
shared_biases
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
parse_conv
(
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
conv_conf
,
num_filters
,
trans
=
True
)
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
psize
=
self
.
calc_parameter_size
(
conv_conf
)
print
(
"output size for %s is %d "
%
(
name
,
conv_conf
.
output_x
))
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
set_layer_size
(
(
conv_conf
.
img_size
**
2
)
*
self
.
config
.
num_filters
)
psize
=
self
.
config
.
size
if
shared_biases
:
psize
=
self
.
config
.
num_filters
self
.
create_bias_parameter
(
bias
,
psize
,
[
psize
,
1
])
def
calc_parameter_size
(
self
,
conv_conf
):
return
conv_conf
.
channels
*
conv_conf
.
filter_channels
\
*
(
conv_conf
.
filter_size
*
conv_conf
.
filter_size_y
)
@
config_layer
(
'exconvt'
)
class
ConvTransLayer
(
ConvTransLayerBase
):
layer_type
=
'exconvt'
@
config_layer
(
'norm'
)
class
NormLayer
(
LayerBase
):
def
__init__
(
...
...
@@ -2424,6 +2532,22 @@ class InterpolationLayer(LayerBase):
config_assert
(
input_layer1
.
size
==
input_layer2
.
size
,
'the two vector inputs should be of the same size'
)
@
config_layer
(
'bilinear_interp'
)
class
BilinearInterpLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
BilinearInterpLayer
,
self
).
__init__
(
name
,
'bilinear_interp'
,
0
,
inputs
=
inputs
,
**
xargs
)
input_layer
=
self
.
get_input_layer
(
0
)
parse_bilinear
(
self
.
inputs
[
0
].
bilinear_interp
,
input_layer
.
name
,
self
.
config
.
inputs
[
0
].
bilinear_interp_conf
);
conf
=
self
.
inputs
[
0
].
bilinear_interp
self
.
set_layer_size
(
conf
.
out_size_x
*
conf
.
out_size_y
*
conf
.
num_channels
)
@
config_layer
(
'sum_to_one_norm'
)
class
SumToOneNormLayer
(
LayerBase
):
def
__init__
(
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
9dd588b4
...
...
@@ -40,8 +40,8 @@ __all__ = ["full_matrix_projection", "AggregateLevel", "ExpandLevel",
'img_cmrnorm_layer'
,
'addto_layer'
,
'concat_layer'
,
'lstm_step_layer'
,
'recurrent_group'
,
'memory'
,
'StaticInput'
,
'expand_layer'
,
'scaling_layer'
,
'power_layer'
,
'interpolation_layer'
,
'
trans
_layer'
,
'sum_to_one_norm_layer'
,
'power_layer'
,
'interpolation_layer'
,
'
bilinear_interp
_layer'
,
'
trans_layer'
,
'
sum_to_one_norm_layer'
,
'get_output_layer'
,
'LayerType'
,
'context_projection'
,
'beam_search'
,
'maxid_layer'
,
'GeneratedInput'
,
'SubsequenceInput'
,
'gru_step_layer'
,
'recurrent_layer'
,
...
...
@@ -79,6 +79,7 @@ class LayerType(object):
COSINE_SIM
=
'cos'
HSIGMOID
=
'hsigmoid'
CONV_LAYER
=
"conv"
CONVTRANS_LAYER
=
"convt"
POOL_LAYER
=
"pool"
BATCH_NORM_LAYER
=
'batch_norm'
NORM_LAYER
=
'norm'
...
...
@@ -94,6 +95,7 @@ class LayerType(object):
EXPAND_LAYER
=
'expand'
INTERPOLATION_LAYER
=
'interpolation'
BILINEAR_INTERP_LAYER
=
'bilinear_interp'
POWER_LAYER
=
'power'
SCALING_LAYER
=
'scaling'
TRANS_LAYER
=
'trans'
...
...
@@ -1261,6 +1263,52 @@ def interpolation_layer(input, weight, name=None, layer_attr=None):
size
=
input
[
0
].
size
)
@
wrap_name_default
()
@
layer_support
()
def
bilinear_interp_layer
(
input
,
out_size_x
=
None
,
out_size_y
=
None
,
name
=
None
,
layer_attr
=
None
):
"""
This layer is to implement bilinear interpolation on conv layer output.
Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation
The simple usage is:
.. code-block:: python
bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
:param input: A input layer.
:type input: LayerOutput.
:param out_size_x: bilinear interpolation output width.
:type out_size_x: int|None
:param out_size_y: bilinear interpolation output height.
:type out_size_y: int|None
:param name: The layer's name, which cna not be specified.
:type name: None|basestring
:param layer_attr: Extra Layer attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert
input
.
layer_type
==
LayerType
.
CONV_LAYER
assert
isinstance
(
input
.
activation
,
LinearActivation
)
assert
out_size_x
>
0
and
out_size_y
>
0
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
bilinear_interp
=
BilinearInterp
(
out_size_x
=
out_size_x
,
out_size_y
=
out_size_y
,
num_channels
=
num_channels
)),
type
=
LayerType
.
BILINEAR_INTERP_LAYER
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
BILINEAR_INTERP_LAYER
,
parents
=
[
input
],
num_filters
=
num_channels
)
@
wrap_name_default
()
@
layer_support
()
def
power_layer
(
input
,
weight
,
name
=
None
,
layer_attr
=
None
):
...
...
@@ -1520,7 +1568,8 @@ def img_conv_layer(input, filter_size, num_filters,
name
=
None
,
num_channels
=
None
,
act
=
None
,
groups
=
1
,
stride
=
1
,
padding
=
0
,
bias_attr
=
None
,
param_attr
=
None
,
shared_biases
=
True
,
layer_attr
=
None
,
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
):
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
,
trans
=
False
):
"""
Convolution layer for image. Paddle only support square input currently and
thus input image's width equals height.
...
...
@@ -1528,7 +1577,14 @@ def img_conv_layer(input, filter_size, num_filters,
The details of convolution layer, please refer UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/
FeatureExtractionUsingConvolution/>`_ .
Convolution Transpose (deconv) layer for image. Paddle only support square
input currently and thus input image's width equals height.
The details of convolution transpose layer,
please refer to the following explanation and references therein
<http://datascience.stackexchange.com/questions/6107/
what-are-deconvolutional-layers/>`_ .
The num_channel means input image's channel number. It may be 1 or 3 when
input is raw pixels of image(mono or RGB), or it may be the previous layer's
num_filters * num_group.
...
...
@@ -1578,6 +1634,8 @@ def img_conv_layer(input, filter_size, num_filters,
:type shared_biases: bool
:param layer_attr: Layer Extra Attribute.
:type layer_attr: ExtraLayerAttribute
:param trans: true if it is a convTransLayer, false if it is a convLayer
:type trans: bool
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -1613,6 +1671,9 @@ def img_conv_layer(input, filter_size, num_filters,
param_attr
.
attr
[
"initial_std"
]
=
init_w
param_attr
.
attr
[
"initial_strategy"
]
=
0
param_attr
.
attr
[
"initial_smart"
]
=
False
lt
=
LayerType
.
CONVTRANS_LAYER
if
trans
else
LayerType
.
CONV_LAYER
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
conv
=
Conv
(
...
...
@@ -1625,10 +1686,10 @@ def img_conv_layer(input, filter_size, num_filters,
num_filters
=
num_filters
,
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
shared_biases
=
shared_biases
,
type
=
LayerType
.
CONV_LAYER
,
type
=
lt
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
CONV_LAYER
,
parents
=
[
input
],
return
LayerOutput
(
name
,
lt
,
parents
=
[
input
],
activation
=
act
,
num_filters
=
num_filters
)
...
...
python/paddle/trainer_config_helpers/tests/configs/generate_protostr.sh
浏览文件 @
9dd588b4
...
...
@@ -9,9 +9,9 @@ protostr=$PWD/protostr
configs
=(
test_fc layer_activations projections test_print_layer
test_sequence_pooling test_lstmemory_layer test_grumemory_layer
last_first_seq test_expand_layer test_ntm_layers test_hsigmoid
img_layers util_layers simple_rnn_layers unused_layers test_cost_layers
img_layers
img_trans_layers
util_layers simple_rnn_layers unused_layers test_cost_layers
test_rnn_group shared_fc shared_lstm test_cost_layers_with_weight
test_
maxout test_bi_grumemory math_ops test_spp_layer
)
test_
spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops
)
for
conf
in
${
configs
[*]
}
...
...
python/paddle/trainer_config_helpers/tests/configs/img_trans_layers.py
0 → 100644
浏览文件 @
9dd588b4
from
paddle.trainer_config_helpers
import
*
settings
(
learning_rate
=
1e-3
,
batch_size
=
1000
)
img
=
data_layer
(
name
=
'image'
,
size
=
227
*
227
)
# the parse_conv in config_parse.py is not strictly accurate when filter_size
# is not square. So here set square filter_size.
img_conv
=
img_conv_layer
(
input
=
img
,
num_channels
=
1
,
num_filters
=
64
,
filter_size
=
(
32
,
32
),
padding
=
(
1
,
1
),
stride
=
(
1
,
1
),
act
=
LinearActivation
(),
trans
=
True
)
img_bn
=
batch_norm_layer
(
input
=
img_conv
,
act
=
ReluActivation
())
img_norm
=
img_cmrnorm_layer
(
input
=
img_bn
,
size
=
32
)
img_pool
=
img_pool_layer
(
input
=
img_conv
,
pool_size
=
32
,
pool_type
=
MaxPooling
())
outputs
(
img_pool
,
img_norm
)
python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
0 → 100644
浏览文件 @
9dd588b4
type: "nn"
layers {
name: "image"
type: "data"
size: 51529
active_type: ""
}
layers {
name: "__conv_0__"
type: "exconvt"
size: 4194304
active_type: ""
inputs {
input_layer_name: "image"
input_parameter_name: "___conv_0__.w0"
conv_conf {
filter_size: 32
channels: 1
stride: 1
padding: 1
groups: 1
filter_channels: 64
output_x: 227
img_size: 256
caffe_mode: true
filter_size_y: 32
padding_y: 1
stride_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 64
shared_biases: true
}
layers {
name: "__batch_norm_0__"
type: "batch_norm"
size: 4194304
active_type: "relu"
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w0"
image_conf {
channels: 64
img_size: 256
}
}
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w1"
}
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w2"
}
bias_parameter_name: "___batch_norm_0__.wbias"
moving_average_fraction: 0.9
}
layers {
name: "__crmnorm_0__"
type: "norm"
size: 4194304
active_type: ""
inputs {
input_layer_name: "__batch_norm_0__"
norm_conf {
norm_type: "cmrnorm-projection"
channels: 64
size: 32
scale: 0.0004
pow: 0.75
output_x: 256
img_size: 256
blocked: false
}
}
}
layers {
name: "__pool_0__"
type: "pool"
size: 3240000
active_type: ""
inputs {
input_layer_name: "__conv_0__"
pool_conf {
pool_type: "max-projection"
channels: 64
size_x: 32
stride: 1
output_x: 225
img_size: 256
padding: 0
size_y: 32
stride_y: 1
output_y: 225
img_size_y: 256
padding_y: 0
}
}
}
parameters {
name: "___conv_0__.w0"
size: 65536
initial_mean: 0.0
initial_std: 0.0441941738242
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___conv_0__.wbias"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 64
dims: 1
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___batch_norm_0__.w0"
size: 64
initial_mean: 1.0
initial_std: 0.0
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___batch_norm_0__.w1"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
is_static: true
is_shared: true
}
parameters {
name: "___batch_norm_0__.w2"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
is_static: true
is_shared: true
}
parameters {
name: "___batch_norm_0__.wbias"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
}
input_layer_names: "image"
output_layer_names: "__pool_0__"
output_layer_names: "__crmnorm_0__"
sub_models {
name: "root"
layer_names: "image"
layer_names: "__conv_0__"
layer_names: "__batch_norm_0__"
layer_names: "__crmnorm_0__"
layer_names: "__pool_0__"
input_layer_names: "image"
output_layer_names: "__pool_0__"
output_layer_names: "__crmnorm_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
0 → 100644
浏览文件 @
9dd588b4
type: "nn"
layers {
name: "data"
type: "data"
size: 2304
active_type: ""
}
layers {
name: "__conv_0__"
type: "exconv"
size: 36864
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___conv_0__.w0"
conv_conf {
filter_size: 3
channels: 1
stride: 1
padding: 1
groups: 1
filter_channels: 1
output_x: 48
img_size: 48
caffe_mode: true
filter_size_y: 3
padding_y: 1
stride_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 16
shared_biases: true
}
layers {
name: "__bilinear_interp_layer_0__"
type: "bilinear_interp"
size: 65536
active_type: ""
inputs {
input_layer_name: "__conv_0__"
bilinear_interp_conf {
out_size_x: 64
out_size_y: 64
num_channels: 16
}
}
}
layers {
name: "__pool_0__"
type: "pool"
size: 16384
active_type: ""
inputs {
input_layer_name: "__bilinear_interp_layer_0__"
pool_conf {
pool_type: "max-projection"
channels: 4
size_x: 2
stride: 2
output_x: 64
img_size: 128
padding: 0
size_y: 2
stride_y: 2
output_y: 64
img_size_y: 128
padding_y: 0
}
}
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 384
active_type: "tanh"
inputs {
input_layer_name: "__pool_0__"
input_parameter_name: "___fc_layer_0__.w0"
}
}
parameters {
name: "___conv_0__.w0"
size: 144
initial_mean: 0.0
initial_std: 0.471404520791
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___conv_0__.wbias"
size: 16
initial_mean: 0.0
initial_std: 0.0
dims: 16
dims: 1
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_0__.w0"
size: 6291456
initial_mean: 0.0
initial_std: 0.0078125
dims: 16384
dims: 384
initial_strategy: 0
initial_smart: true
}
input_layer_names: "data"
output_layer_names: "__fc_layer_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__conv_0__"
layer_names: "__bilinear_interp_layer_0__"
layer_names: "__pool_0__"
layer_names: "__fc_layer_0__"
input_layer_names: "data"
output_layer_names: "__fc_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py
0 → 100644
浏览文件 @
9dd588b4
from
paddle.trainer_config_helpers
import
*
settings
(
batch_size
=
1000
,
learning_rate
=
1e-5
)
data
=
data_layer
(
name
=
'data'
,
size
=
2304
)
conv
=
img_conv_layer
(
input
=
data
,
filter_size
=
3
,
num_channels
=
1
,
num_filters
=
16
,
padding
=
1
,
act
=
LinearActivation
(),
bias_attr
=
True
)
bilinear
=
bilinear_interp_layer
(
input
=
conv
,
out_size_x
=
64
,
out_size_y
=
64
)
pool
=
img_pool_layer
(
input
=
bilinear
,
num_channels
=
4
,
pool_size
=
2
,
stride
=
2
,
pool_type
=
MaxPooling
())
fc
=
fc_layer
(
input
=
pool
,
size
=
384
,
bias_attr
=
False
)
outputs
(
fc
)
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录