提交 9ca8124f 编写于 作者: Y Yao Cheng

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop

yes
../../v2/build_and_install/paddleci.png
\ No newline at end of file
......@@ -125,12 +125,12 @@ Compile Time -> IR -> Runtime
## Operator/OpWithKernel/OpKernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot)
![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op_op_with_kern_class_diagram.dot)
---
## Operator
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot)
![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op.dot)
* `Operator` is the fundamental building block of the user interface.
* Operator stores input/output variable names and attributes.
......@@ -141,7 +141,7 @@ Compile Time -> IR -> Runtime
## OpWithKernel/Kernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot)
![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op_with_kernel.dot)
* `OpWithKernel` inherits `Operator`.
* `OpWithKernel` contains a Kernel map.
......
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator| InferShape()=0\lRun()=0\l | map<string, string[]> inputs_\lmap<string, string[]> outputs_ \l AttributeMap attrs_\l}"];
}
\ No newline at end of file
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator| InferShape()=0\lRun()=0\l | map<string, string[]> inputs_\lmap<string, string[]> outputs_ \l AttributeMap attrs_\l}"];
op_with_kern [label="{OpWithKernel | InferShape()=0\lRun()\l | map<OpKernelKey,OpKernel>kernels_ }"]
op_kernel [label="{OpKernel | Compute()=0}"]
op_kernel_key [label="{OpKernelKey| Place place\n...}"]
op -> op_with_kern [dir=back, arrowtail=onormal]
op_with_kern -> op_kernel [arrowhead=vee, label="contains many"]
{
rank=same;
op_with_kern
op_kernel
}
op_kernel -> op_kernel_key [style=invis]
{
rank=same;
op_kernel
op_kernel_key
}
op_with_kern -> op_kernel_key [arrowhead=vee, label ="\nas map key"]
mul_op [label="MulOp"]
op_with_kern -> mul_op [dir=back, arrowtail=onormal]
mul_kernel [label="template <typename Place>\lclass MulOpKernel\l"]
op_kernel -> mul_kernel [dir=back, arrowtail=onormal]
mul_op -> mul_kernel [arrowhead=vee, label="register many"]
{
rank=same;
mul_op;
mul_kernel;
}
}
\ No newline at end of file
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator}"];
op_with_kern [label="{OpWithKernel | InferShape()=0\lRun()\l | map<OpKernelKey,OpKernel>kernels_ }"]
op_kernel [label="{OpKernel | Compute()=0}"]
op_kernel_key [label="{OpKernelKey| Place place\n...}"]
op -> op_with_kern [dir=back, arrowtail=onormal]
op_with_kern -> op_kernel [arrowhead=vee, label="contains many"]
{
rank=same;
op_with_kern
op_kernel
}
op_kernel -> op_kernel_key [style=invis]
{
rank=same;
op_kernel
op_kernel_key
}
op_with_kern -> op_kernel_key [arrowhead=vee, label ="\nas map key"]
}
\ No newline at end of file
......@@ -142,7 +142,7 @@ gated_unit
-----------
.. autoclass:: paddle.v2.layer.gated_unit
:noindex:
Recurrent Layer Group
=====================
......@@ -354,7 +354,7 @@ dropout
--------
.. autoclass:: paddle.v2.layer.dropout
:noindex:
dot_prod
---------
.. autoclass:: paddle.v2.layer.dot_prod
......@@ -460,6 +460,11 @@ multi_binary_label_cross_entropy_cost
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex:
classification_cost
-------------------
.. autoclass:: paddle.v2.layer.classification_cost
:noindex:
huber_regression_cost
-------------------------
.. autoclass:: paddle.v2.layer.huber_regression_cost
......@@ -534,7 +539,7 @@ detection_output
----------------
.. autoclass:: paddle.v2.layer.detection_output
:noindex:
Check Layer
============
......
......@@ -49,7 +49,9 @@ void FetchOpHandle::RunImpl() {
platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
for (auto *input : inputs_) {
auto *var = static_cast<VarHandle *>(input);
var->generated_op_->Wait(cpu_ctx);
if (var->generated_op_) {
var->generated_op_->Wait(cpu_ctx);
}
}
tensors_.resize(inputs_.size());
auto *var_handle = static_cast<VarHandle *>(inputs_[0]);
......
......@@ -36,7 +36,9 @@ void NCCLAllReduceOpHandle::RunImpl() {
// Wait input done
for (auto *in : inputs_) {
auto &p = static_cast<VarHandle *>(in)->place_;
in->generated_op_->Wait(dev_ctxes_[p]);
if (in->generated_op_) {
in->generated_op_->Wait(dev_ctxes_[p]);
}
}
auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_;
......
......@@ -32,7 +32,9 @@ void SendOpHandle::RunImpl() {
if (in->DebugString() == "dummy") { // HACK
continue;
}
in->generated_op_->Wait(dev_ctxes_[p]);
if (in->generated_op_) {
in->generated_op_->Wait(dev_ctxes_[p]);
}
}
auto &tmp_scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
// FIXME(wuyi): can not use RunAndRecordEvent here, for it will cause dead
......
......@@ -36,5 +36,5 @@ inference_test(label_semantic_roles)
inference_test(recognize_digits ARGS mlp conv)
inference_test(recommender_system)
#inference_test(rnn_encoder_decoder)
inference_test(understand_sentiment ARGS conv)
#inference_test(understand_sentiment ARGS conv)
inference_test(word2vec)
......@@ -187,7 +187,8 @@ class GemmConvKernel : public framework::OpKernel<T> {
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
blas.MatMul(filter_slice, col_matrix, &out_slice);
blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
T(0.0));
}
}
}
......@@ -304,7 +305,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
col_matrix.ShareDataWith(in_grad_slice);
col_matrix.Resize(col_matrix_shape);
}
blas.MatMul(filter_slice, true, out_grad_slice, false, &col_matrix);
blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
&col_matrix, T(0.0));
if (is_expand && data_dim == 2U) {
col2im(dev_ctx, col, dilations, strides,
......@@ -351,8 +353,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
// gemm
Tensor filter_grad_slice =
filter_grad_.Slice(g * out_step, (g + 1) * out_step);
blas.MatMul(out_grad_slice, false, col_matrix, true,
&filter_grad_slice);
blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
&filter_grad_slice, T(1.0));
}
}
}
......
......@@ -135,7 +135,8 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
blas.MatMul(filter, true, input_batch, false, &col_matrix);
blas.MatMul(filter, true, input_batch, false, static_cast<T>(1.0),
&col_matrix, static_cast<T>(0.0));
if (data_dim == 2U) {
// col2im: col_matrix -> dy
......@@ -267,7 +268,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// or
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
// d, h, w)
blas.MatMul(filter, false, col_matrix, false, &input_grad_batch);
blas.MatMul(filter, false, col_matrix, false, static_cast<T>(1.0),
&input_grad_batch, static_cast<T>(0.0));
}
if (filter_grad) {
// input batch
......@@ -277,7 +279,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// or
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
// k_h * k_w)
blas.MatMul(in_batch, false, col_matrix, true, &filter_grad_);
blas.MatMul(in_batch, false, col_matrix, true, static_cast<T>(1.0),
&filter_grad_, static_cast<T>(1.0));
}
}
}
......
......@@ -63,6 +63,7 @@ __device__ T reduceSum(T val, int tid, int len) {
val += platform::CudaShuffleDownSync(mask, val, offset);
if (tid < warpSize) shm[tid] = 0;
__syncthreads();
if (tid % warpSize == 0) {
shm[tid / warpSize] = val;
......
......@@ -463,7 +463,7 @@ void SetProfileListener() {
std::mt19937 rng;
rng.seed(std::random_device()());
std::uniform_int_distribution<std::mt19937::result_type> dist6(
1, std::numeric_limits<int64_t>::max());
1, std::numeric_limits<std::mt19937::result_type>::max());
profiler_lister_id = dist6(rng);
}
int64_t ListenerId() { return profiler_lister_id; }
......
......@@ -18,7 +18,7 @@ import unittest
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.memory_optimization_transpiler import memory_optimize
from paddle.fluid.transpiler import memory_optimize
class TestControlFlowGraph(unittest.TestCase):
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy
import numpy as np
import unittest
import paddle.fluid as fluid
......@@ -243,7 +243,7 @@ class TestParallelExecutorBase(unittest.TestCase):
begin = time.time()
first_loss, = run_executor(
exe=exe, feed=feed_dict, fetch_list=[loss.name])
first_loss = numpy.array(first_loss)
first_loss = np.array(first_loss)
for i in xrange(iter):
run_executor(exe=exe, feed=feed_dict, fetch_list=[])
......@@ -256,7 +256,7 @@ class TestParallelExecutorBase(unittest.TestCase):
print "%.4f Instance per second" % (
(batch_size * iter + 2) / (end - begin))
last_loss = numpy.array(last_loss)
last_loss = np.array(last_loss)
print first_loss, last_loss
# self.assertGreater(first_loss[0], last_loss[0])
......@@ -284,8 +284,8 @@ class TestMNIST(TestParallelExecutorBase):
self.check_network_convergence(simple_fc_net)
self.check_network_convergence(simple_fc_net, allow_op_delay=True)
img = numpy.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64')
img = np.zeros(shape=[32, 784], dtype='float32')
label = np.ones(shape=[32, 1], dtype='int64')
self.check_network_convergence(
simple_fc_net, feed_dict={"image": img,
"label": label})
......@@ -294,8 +294,8 @@ class TestMNIST(TestParallelExecutorBase):
self.check_simple_fc_convergence()
def check_simple_fc_parallel_accuracy(self):
img = numpy.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64')
img = np.zeros(shape=[32, 784], dtype='float32')
label = np.ones(shape=[32, 1], dtype='int64')
single_first_loss, single_last_loss = self.check_network_convergence(
method=simple_fc_net,
seed=1000,
......@@ -319,8 +319,8 @@ class TestMNIST(TestParallelExecutorBase):
def check_batchnorm_fc_convergence(self):
self.check_network_convergence(fc_with_batchnorm)
img = numpy.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64')
img = np.zeros(shape=[32, 784], dtype='float32')
label = np.ones(shape=[32, 1], dtype='int64')
self.check_network_convergence(
fc_with_batchnorm, feed_dict={"image": img,
"label": label})
......@@ -404,9 +404,6 @@ class ModelHyperParams(object):
dropout = 0.1
import numpy as np
def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head):
"""
Pad the instances to the max sequence length in batch, and generate the
......@@ -533,9 +530,8 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
opt.minimize(loss)
batch_size = 32
image = numpy.random.normal(size=(batch_size,
784)).astype('float32')
label = numpy.random.randint(0, 10, (batch_size, 1), dtype="int64")
image = np.random.normal(size=(batch_size, 784)).astype('float32')
label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
......@@ -552,12 +548,12 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
for i in xrange(5):
test_loss, = test_exe.run([loss.name], feed=feed_dict)
test_loss = numpy.array(test_loss)
test_loss = np.array(test_loss)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
train_loss = numpy.array(train_loss)
train_loss = np.array(train_loss)
self.assertTrue(
numpy.allclose(
np.allclose(
train_loss, test_loss, atol=1e-8),
"Train loss: " + str(train_loss) + "\n Test loss:" +
str(test_loss))
......@@ -712,7 +708,7 @@ class TestCRFModel(unittest.TestCase):
data = train_data()
for i in xrange(10):
cur_batch = next(data)
print map(numpy.array,
print map(np.array,
pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))[0]
......@@ -721,3 +717,84 @@ class TestCRFModel(unittest.TestCase):
def test_update_dense_parameter(self):
self.check_network_convergence(is_sparse=False)
# test fetch all the variables of global_block
import paddle.dataset.flowers as flowers
import math
def Lenet(data, class_dim):
conv1 = fluid.layers.conv2d(data, 32, 5, 1, act=None)
bn1 = fluid.layers.batch_norm(conv1, act='relu')
pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
conv2 = fluid.layers.conv2d(pool1, 50, 5, 1, act=None)
bn2 = fluid.layers.batch_norm(conv2, act='relu')
pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
fc1 = fluid.layers.fc(pool2, size=500, act='relu')
fc2 = fluid.layers.fc(fc1, size=class_dim, act='softmax')
return fc2
class TestFetchOp(unittest.TestCase):
def parallel_exe(self, train_inputs, seed):
main = fluid.Program()
startup = fluid.Program()
startup.random_seed = seed
with fluid.program_guard(main, startup):
data = fluid.layers.data(
name='image', shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = Lenet(data, class_dim=102)
loss = fluid.layers.cross_entropy(input=out, label=label)
loss = fluid.layers.mean(loss)
opt = fluid.optimizer.Momentum(
learning_rate=0.1,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
opt.minimize(loss)
# TODO(zcd): I found that onece the memory optimizer is open,
# parallel_exe doesn't fetch some variable, such as conv2d_0.b_0@GRAD,
# conv2d_1.b_0@GRAD. Those variables should not be pruned.
# fluid.memory_optimize(main)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup)
feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
pe = fluid.ParallelExecutor(
use_cuda=True, loss_name=loss.name, main_program=main)
fetch_list = []
all_vars = main.global_block().vars
for k, v in all_vars.iteritems():
if 'tmp' not in k and k[0] is not '_' or v.persistable:
fetch_list.append(k)
for data in train_inputs:
ret = pe.run(fetch_list, feed=feeder.feed(data))
for i in range(len(fetch_list)):
assert not math.isnan(np.sum(ret[i])) and \
not math.isinf(np.sum(ret[i]))
def test_update_sparse_parameter(self):
tst_reader = paddle.batch(flowers.test(use_xmap=False), batch_size=16)
tst_reader_iter = tst_reader()
iters = 3
train_inputs = []
for i in range(iters):
train_inputs.append(tst_reader_iter.next())
self.parallel_exe(train_inputs, seed=1)
if __name__ == '__main__':
unittest.main()
......@@ -14,7 +14,7 @@
import math
import unittest
from paddle.fluid.distribute_transpiler import split_dense_variable
from paddle.fluid.transpiler.distribute_transpiler import split_dense_variable
import paddle.fluid as fluid
import paddle.fluid.core as core
import random
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册