Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9a9c690e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9a9c690e
编写于
1月 21, 2019
作者:
X
Xin Pan
提交者:
GitHub
1月 21, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15343 from panyx0718/imperative3
add a GAN model in imperative mode
上级
62d36ce0
3c09a57e
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
283 addition
and
45 deletion
+283
-45
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+4
-4
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+31
-14
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+8
-14
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+3
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+3
-0
python/paddle/fluid/imperative/layers.py
python/paddle/fluid/imperative/layers.py
+10
-3
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+33
-3
python/paddle/fluid/tests/unittests/test_imperative_base.py
python/paddle/fluid/tests/unittests/test_imperative_base.py
+6
-5
python/paddle/fluid/tests/unittests/test_imperative_gan.py
python/paddle/fluid/tests/unittests/test_imperative_gan.py
+185
-0
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
9a9c690e
...
...
@@ -57,15 +57,15 @@ class Autograd {
Autograd
()
{}
void
RunBackward
(
VarBase
*
var
)
{
if
(
var
->
stop_gradient_
)
{
if
(
var
->
IsStopGradient
()
)
{
return
;
}
VLOG
(
3
)
<<
"start autograd"
;
std
::
deque
<
OpBase
*>
ready
;
ready
.
push_back
(
var
->
pre_op_
);
ready
.
push_back
(
var
->
PreOp
()
);
std
::
map
<
OpBase
*
,
int
>
dep_counts
=
ComputeDepCounts
(
var
->
pre_op_
);
std
::
map
<
OpBase
*
,
int
>
dep_counts
=
ComputeDepCounts
(
var
->
PreOp
()
);
while
(
!
ready
.
empty
())
{
OpBase
*
ready_op
=
ready
.
front
();
...
...
@@ -77,7 +77,7 @@ class Autograd {
const
std
::
vector
<
VarBase
*>&
ingrads
=
it
.
second
;
for
(
size_t
i
=
0
;
i
<
ingrads
.
size
();
++
i
)
{
if
(
!
ingrads
[
i
])
continue
;
if
(
ready_op
->
input_vars_
[
it
.
first
][
i
]
->
stop_gradient_
)
{
if
(
ready_op
->
input_vars_
[
it
.
first
][
i
]
->
IsStopGradient
()
)
{
continue
;
}
OpBase
*
pre_op
=
ready_op
->
pre_ops_
[
it
.
first
][
i
];
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
9a9c690e
...
...
@@ -100,22 +100,20 @@ class VarBase {
// Owns `var` and `grad`
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
)
:
pre_op_
(
nullptr
),
pre_op_out_name_
(),
pre_op_out_idx_
(
-
1
),
var_desc_
(
nullptr
),
:
var_desc_
(
nullptr
),
var_
(
var
),
grads_
(
grad
),
stop_gradient_
(
false
)
{}
stop_gradient_
(
false
),
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
)
{}
explicit
VarBase
(
bool
stop_gradient
)
:
pre_op_
(
nullptr
),
pre_op_out_name_
(),
pre_op_out_idx_
(
-
1
),
var_desc_
(
nullptr
),
:
var_desc_
(
nullptr
),
var_
(
new
framework
::
Variable
()),
grads_
(
stop_gradient
?
nullptr
:
new
VarBase
(
true
)),
stop_gradient_
(
stop_gradient
)
{}
stop_gradient_
(
stop_gradient
),
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
)
{}
virtual
~
VarBase
()
{
if
(
var_
)
{
...
...
@@ -127,8 +125,27 @@ class VarBase {
}
}
OpBase
*
PreOp
()
const
{
return
pre_op_
;
}
int
PreOpOutIdx
()
const
{
return
pre_op_out_idx_
;
}
void
SetStopGradient
(
bool
stop_gradient
)
{
stop_gradient_
=
stop_gradient
;
}
bool
IsStopGradient
()
const
{
return
stop_gradient_
;
}
void
RunBackward
();
void
TrackPreOp
(
OpBase
*
pre_op
,
const
std
::
string
&
pre_op_out_name
,
int
pre_op_out_idx
,
bool
stop_gradient
)
{
pre_op_
=
pre_op
;
pre_op_out_name_
=
pre_op_out_name
;
pre_op_out_idx_
=
pre_op_out_idx
;
stop_gradient_
=
stop_gradient
;
}
void
ClearGradient
()
{
delete
grads_
;
grads_
=
new
VarBase
(
true
);
}
framework
::
LoDTensor
&
GradValue
();
inline
std
::
string
GradName
()
const
{
...
...
@@ -138,16 +155,16 @@ class VarBase {
return
string
::
Sprintf
(
"%s@IGrad"
,
var_desc_
->
Name
());
}
OpBase
*
pre_op_
;
std
::
string
pre_op_out_name_
;
int
pre_op_out_idx_
;
framework
::
VarDesc
*
var_desc_
;
framework
::
Variable
*
var_
;
VarBase
*
grads_
;
private:
bool
stop_gradient_
;
OpBase
*
pre_op_
;
std
::
string
pre_op_out_name_
;
int
pre_op_out_idx_
;
};
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
9a9c690e
...
...
@@ -63,9 +63,9 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
invars
.
push_back
(
inp
->
var_
);
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
if
(
inp
->
pre_op_
)
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
pre_op_
);
op
->
pre_ops_out_idx_
[
it
.
first
].
push_back
(
inp
->
pre_op_out_idx_
);
if
(
inp
->
PreOp
()
)
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
PreOp
()
);
op
->
pre_ops_out_idx_
[
it
.
first
].
push_back
(
inp
->
PreOpOutIdx
()
);
}
else
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
nullptr
);
}
...
...
@@ -89,10 +89,7 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
}
else
{
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
}
out
->
stop_gradient_
=
stop_gradient
;
out
->
pre_op_
=
op
;
out
->
pre_op_out_name_
=
it
.
first
;
out
->
pre_op_out_idx_
=
i
;
out
->
TrackPreOp
(
op
,
it
.
first
,
i
,
stop_gradient
);
VLOG
(
3
)
<<
"output vname "
<<
out
->
var_desc_
->
Name
()
<<
" "
<<
out
->
var_
->
IsInitialized
();
...
...
@@ -167,9 +164,9 @@ std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
op
->
input_vars_
[
PyLayer
::
kFwdInp
]
=
inputs
;
op
->
output_vars_
[
PyLayer
::
kFwdOut
]
=
PyLayer
::
Apply
(
op
->
forward_id_
,
inputs
);
for
(
VarBase
*
inp
:
inputs
)
{
if
(
inp
->
pre_op_
)
{
op
->
pre_ops_
[
PyLayer
::
kFwdInp
].
push_back
(
inp
->
pre_op_
);
op
->
pre_ops_out_idx_
[
PyLayer
::
kFwdInp
].
push_back
(
inp
->
pre_op_out_idx_
);
if
(
inp
->
PreOp
()
)
{
op
->
pre_ops_
[
PyLayer
::
kFwdInp
].
push_back
(
inp
->
PreOp
()
);
op
->
pre_ops_out_idx_
[
PyLayer
::
kFwdInp
].
push_back
(
inp
->
PreOpOutIdx
()
);
}
else
{
op
->
pre_ops_
[
PyLayer
::
kFwdInp
].
push_back
(
nullptr
);
}
...
...
@@ -178,10 +175,7 @@ std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
auto
&
outputs
=
op
->
output_vars_
[
PyLayer
::
kFwdOut
];
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
VarBase
*
out
=
outputs
[
i
];
out
->
stop_gradient_
=
stop_gradient
;
out
->
pre_op_
=
op
;
out
->
pre_op_out_name_
=
PyLayer
::
kFwdOut
;
out
->
pre_op_out_idx_
=
i
;
out
->
TrackPreOp
(
op
,
PyLayer
::
kFwdOut
,
i
,
stop_gradient
);
}
if
(
!
stop_gradient
)
{
auto
&
grad_input_vars
=
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
9a9c690e
...
...
@@ -133,6 +133,7 @@ PYBIND11_MODULE(core, m) {
[](
imperative
::
VarBase
&
self
)
{
self
.
RunBackward
();
})
.
def
(
"_grad_name"
,
&
imperative
::
VarBase
::
GradName
)
.
def
(
"_grad_value"
,
&
imperative
::
VarBase
::
GradValue
)
.
def
(
"_clear_gradient"
,
&
imperative
::
VarBase
::
ClearGradient
)
.
def
(
"_grad_ivar"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
grads_
;
},
py
::
return_value_policy
::
reference
)
...
...
@@ -147,9 +148,9 @@ PYBIND11_MODULE(core, m) {
py
::
return_value_policy
::
reference
)
.
def_property
(
"stop_gradient"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
stop_gradient_
;
},
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
IsStopGradient
()
;
},
[](
imperative
::
VarBase
&
self
,
bool
stop_gradient
)
{
self
.
stop_gradient_
=
stop_gradient
;
self
.
SetStopGradient
(
stop_gradient
)
;
});
py
::
class_
<
imperative
::
OpBase
,
PyOpBase
>
(
m
,
"OpBase"
,
R"DOC()DOC"
)
...
...
python/paddle/fluid/framework.py
浏览文件 @
9a9c690e
...
...
@@ -389,6 +389,9 @@ class Variable(object):
def
_gradient
(
self
):
return
np
.
array
(
self
.
_ivar
.
_grad_value
())
def
_clear_gradient
(
self
):
self
.
_ivar
.
_clear_gradient
()
def
__str__
(
self
):
return
self
.
to_string
(
True
)
...
...
python/paddle/fluid/imperative/layers.py
浏览文件 @
9a9c690e
...
...
@@ -27,18 +27,25 @@ class Layer(core.Layer):
"""Layers composed of operators."""
def
__init__
(
self
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
name
=
None
):
self
.
_
once_
built
=
False
self
.
_built
=
False
self
.
_dtype
=
dtype
def
parameters
(
self
):
return
[]
def
clear_gradients
(
self
):
for
p
in
self
.
parameters
():
p
.
_clear_gradient
()
def
_build_once
(
self
,
inputs
):
pass
def
__call__
(
self
,
*
inputs
):
if
not
self
.
_
once_
built
:
if
not
self
.
_built
:
self
.
_build_once
(
*
inputs
)
self
.
_once_built
=
True
outputs
=
self
.
forward
(
*
inputs
)
self
.
_built
=
True
return
outputs
def
forward
(
self
,
*
inputs
):
...
...
python/paddle/fluid/imperative/nn.py
浏览文件 @
9a9c690e
...
...
@@ -48,6 +48,7 @@ class Conv2D(layers.Layer):
assert
param_attr
is
not
False
,
"param_attr should not be False here."
super
(
Conv2D
,
self
).
__init__
(
name
=
name
,
dtype
=
dtype
)
# TODO(minqiyang): Move this to the top.
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
type
(
self
).
__name__
,
...
...
@@ -209,14 +210,25 @@ class FC(layers.Layer):
def
__init__
(
self
,
size
,
param_attr
=
None
,
bias_attr
=
None
,
num_flatten_dims
=
1
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
act
=
None
,
name
=
None
):
super
(
FC
,
self
).
__init__
()
self
.
_size
=
size
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_dtype
=
dtype
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
'FC'
,
param_attr
=
param_attr
)
self
.
_helper
=
LayerHelper
(
'FC'
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
act
=
act
,
name
=
name
)
def
parameters
(
self
):
return
[
self
.
_w
,
self
.
_b
]
def
_build_once
(
self
,
input
):
input_shape
=
input
.
shape
...
...
@@ -247,4 +259,22 @@ class FC(layers.Layer):
inputs
=
{
"X"
:
[
tmp
]},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"use_mkldnn"
:
False
})
return
out
bias_attr
=
self
.
_helper
.
bias_attr
if
bias_attr
:
# add bias
size
=
list
(
out
.
shape
[
1
:])
if
not
self
.
_built
:
self
.
_b
=
self
.
_helper
.
create_parameter
(
attr
=
bias_attr
,
shape
=
size
,
dtype
=
out
.
dtype
,
is_bias
=
True
)
bias_out
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
out
.
dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
out
],
'Y'
:
[
self
.
_b
]},
outputs
=
{
'Out'
:
[
bias_out
]},
attrs
=
{
'axis'
:
1
})
out
=
bias_out
# add activation
return
self
.
_helper
.
append_activation
(
out
)
python/paddle/fluid/tests/unittests/test_imperative_base.py
浏览文件 @
9a9c690e
...
...
@@ -21,10 +21,11 @@ from paddle.fluid import core
@
contextlib
.
contextmanager
def
new_program_scope
():
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
def
new_program_scope
(
main
=
None
,
startup
=
None
,
scope
=
None
):
prog
=
main
if
main
else
fluid
.
Program
()
startup_prog
=
startup
if
startup
else
fluid
.
Program
()
scope
=
scope
if
scope
else
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
yield
with
fluid
.
unique_name
.
guard
():
yield
python/paddle/fluid/tests/unittests/test_imperative_gan.py
0 → 100644
浏览文件 @
9a9c690e
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
contextlib
import
unittest
import
numpy
as
np
import
six
import
sys
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
test_imperative_base
import
new_program_scope
from
paddle.fluid.imperative.base
import
to_variable
class
Discriminator
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
Discriminator
,
self
).
__init__
()
self
.
_fc1
=
FC
(
size
=
32
,
act
=
'elu'
,
name
=
"d_fc1"
)
self
.
_fc2
=
FC
(
size
=
1
,
name
=
"d_fc2"
)
def
parameters
(
self
):
return
self
.
_fc1
.
parameters
()
+
self
.
_fc2
.
parameters
()
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
return
self
.
_fc2
(
x
)
class
Generator
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
Generator
,
self
).
__init__
()
self
.
_fc1
=
FC
(
size
=
64
,
act
=
'elu'
,
name
=
"g_fc1"
)
self
.
_fc2
=
FC
(
size
=
64
,
act
=
'elu'
,
name
=
"g_fc2"
)
self
.
_fc3
=
FC
(
size
=
1
,
name
=
"g_fc3"
)
def
parameters
(
self
):
return
self
.
_fc1
.
parameters
()
+
self
.
_fc2
.
parameters
(
)
+
self
.
_fc3
.
parameters
()
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc2
(
x
)
return
self
.
_fc3
(
x
)
class
TestImperativeMnist
(
unittest
.
TestCase
):
def
test_mnist_cpu_float32
(
self
):
seed
=
90
startup
=
fluid
.
Program
()
startup
.
random_seed
=
seed
discriminate_p
=
fluid
.
Program
()
generate_p
=
fluid
.
Program
()
discriminate_p
.
random_seed
=
seed
generate_p
.
random_seed
=
seed
scope
=
fluid
.
core
.
Scope
()
with
new_program_scope
(
main
=
discriminate_p
,
startup
=
startup
,
scope
=
scope
):
discriminator
=
Discriminator
()
generator
=
Generator
()
img
=
fluid
.
layers
.
data
(
name
=
"img"
,
shape
=
[
2
,
1
],
append_batch_size
=
False
)
noise
=
fluid
.
layers
.
data
(
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
d_real
=
discriminator
(
img
)
d_loss_real
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_real
,
label
=
fluid
.
layers
.
fill_constant
(
shape
=
[
2
,
1
],
dtype
=
'float32'
,
value
=
1.0
)))
d_fake
=
discriminator
(
generator
(
noise
))
d_loss_fake
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
fluid
.
layers
.
fill_constant
(
shape
=
[
2
,
1
],
dtype
=
'float32'
,
value
=
0.0
)))
d_loss
=
d_loss_real
+
d_loss_fake
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
.
minimize
(
d_loss
)
with
new_program_scope
(
main
=
generate_p
,
startup
=
startup
,
scope
=
scope
):
discriminator
=
Discriminator
()
generator
=
Generator
()
noise
=
fluid
.
layers
.
data
(
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
d_fake
=
discriminator
(
generator
(
noise
))
g_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
fluid
.
layers
.
fill_constant
(
shape
=
[
2
,
1
],
dtype
=
'float32'
,
value
=
1.0
)))
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
.
minimize
(
g_loss
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
static_params
=
dict
()
with
fluid
.
scope_guard
(
scope
):
img
=
np
.
ones
([
2
,
1
],
np
.
float32
)
noise
=
np
.
ones
([
2
,
2
],
np
.
float32
)
exe
.
run
(
startup
)
static_d_loss
=
exe
.
run
(
discriminate_p
,
feed
=
{
'img'
:
img
,
'noise'
:
noise
},
fetch_list
=
[
d_loss
])[
0
]
static_g_loss
=
exe
.
run
(
generate_p
,
feed
=
{
'noise'
:
noise
},
fetch_list
=
[
g_loss
])[
0
]
# generate_p contains all parameters needed.
for
param
in
generate_p
.
global_block
().
all_parameters
():
static_params
[
param
.
name
]
=
np
.
array
(
scope
.
find_var
(
param
.
name
).
get_tensor
())
dy_params
=
dict
()
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
discriminator
=
Discriminator
()
generator
=
Generator
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
d_real
=
discriminator
(
to_variable
(
np
.
ones
([
2
,
1
],
np
.
float32
)))
d_loss_real
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_real
,
label
=
to_variable
(
np
.
ones
([
2
,
1
],
np
.
float32
))))
d_fake
=
discriminator
(
generator
(
to_variable
(
np
.
ones
([
2
,
2
],
np
.
float32
))))
d_loss_fake
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
to_variable
(
np
.
zeros
([
2
,
1
],
np
.
float32
))))
d_loss
=
d_loss_real
+
d_loss_fake
d_loss
.
_backward
()
sgd
.
minimize
(
d_loss
)
discriminator
.
clear_gradients
()
generator
.
clear_gradients
()
d_fake
=
discriminator
(
generator
(
to_variable
(
np
.
ones
([
2
,
2
],
np
.
float32
))))
g_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
to_variable
(
np
.
ones
([
2
,
1
],
np
.
float32
))))
g_loss
.
_backward
()
sgd
.
minimize
(
g_loss
)
for
p
in
discriminator
.
parameters
():
dy_params
[
p
.
name
]
=
p
.
_numpy
()
for
p
in
generator
.
parameters
():
dy_params
[
p
.
name
]
=
p
.
_numpy
()
dy_g_loss
=
g_loss
.
_numpy
()
dy_d_loss
=
d_loss
.
_numpy
()
self
.
assertEqual
(
dy_g_loss
,
static_g_loss
)
self
.
assertEqual
(
dy_d_loss
,
static_d_loss
)
for
k
,
v
in
six
.
iteritems
(
dy_params
):
self
.
assertTrue
(
np
.
allclose
(
v
,
static_params
[
k
]))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录