Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9a74c448
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9a74c448
编写于
10月 29, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop
上级
6e361542
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
55 addition
and
55 deletion
+55
-55
paddle/fluid/operators/space_to_depth_op.cc
paddle/fluid/operators/space_to_depth_op.cc
+17
-17
paddle/fluid/operators/space_to_depth_op.h
paddle/fluid/operators/space_to_depth_op.h
+13
-13
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+11
-11
python/paddle/fluid/tests/unittests/test_space_to_depth_op.py
...on/paddle/fluid/tests/unittests/test_space_to_depth_op.py
+14
-14
未找到文件。
paddle/fluid/operators/space_to_depth_op.cc
浏览文件 @
9a74c448
...
@@ -31,31 +31,31 @@ class SpaceToDepthOp : public framework::OperatorWithKernel {
...
@@ -31,31 +31,31 @@ class SpaceToDepthOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
4
,
"input should be a 4D tensor"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
4
,
"input should be a 4D tensor"
);
auto
stride
=
ctx
->
Attrs
().
Get
<
int64_t
>
(
"strid
e"
);
auto
blocksize
=
ctx
->
Attrs
().
Get
<
int64_t
>
(
"blocksiz
e"
);
PADDLE_ENFORCE_GT
(
stride
,
1
,
"The strid
e should be Greater than 1"
);
PADDLE_ENFORCE_GT
(
blocksize
,
1
,
"The blocksiz
e should be Greater than 1"
);
PADDLE_ENFORCE_GT
(
x_dims
[
1
],
0
,
"input channel should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
1
],
0
,
"input channel should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
2
],
0
,
"input Height should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
2
],
0
,
"input Height should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
3
],
0
,
"input Width should be Greater than 0"
);
PADDLE_ENFORCE_GT
(
x_dims
[
3
],
0
,
"input Width should be Greater than 0"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
]
%
(
stride
*
strid
e
),
0
,
PADDLE_ENFORCE_EQ
(
x_dims
[
1
]
%
(
blocksize
*
blocksiz
e
),
0
,
"input channel should be divisible of the square of "
"input channel should be divisible of the square of "
"SpaceToDepthOp
strid
e"
);
"SpaceToDepthOp
blocksiz
e"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
2
]
%
(
strid
e
),
0
,
PADDLE_ENFORCE_EQ
(
x_dims
[
2
]
%
(
blocksiz
e
),
0
,
"input Height should be divisible of the square of "
"input Height should be divisible of the square of "
"SpaceToDepthOp
strid
e"
);
"SpaceToDepthOp
blocksiz
e"
);
PADDLE_ENFORCE_EQ
(
x_dims
[
3
]
%
(
strid
e
),
0
,
PADDLE_ENFORCE_EQ
(
x_dims
[
3
]
%
(
blocksiz
e
),
0
,
"input Width should be divisible of the square of "
"input Width should be divisible of the square of "
"SpaceToDepthOp
strid
e"
);
"SpaceToDepthOp
blocksiz
e"
);
VLOG
(
3
)
<<
"SpaceToDepthOp operator x.shape="
<<
x_dims
VLOG
(
3
)
<<
"SpaceToDepthOp operator x.shape="
<<
x_dims
<<
"Attribute
stride"
<<
strid
e
<<
std
::
endl
;
<<
"Attribute
blocksize"
<<
blocksiz
e
<<
std
::
endl
;
std
::
vector
<
int64_t
>
output_shape
(
4
,
0
);
// [B,C,H,W]
std
::
vector
<
int64_t
>
output_shape
(
4
,
0
);
// [B,C,H,W]
output_shape
[
0
]
=
x_dims
[
0
];
output_shape
[
0
]
=
x_dims
[
0
];
output_shape
[
1
]
=
x_dims
[
1
]
*
stride
*
strid
e
;
output_shape
[
1
]
=
x_dims
[
1
]
*
blocksize
*
blocksiz
e
;
output_shape
[
2
]
=
x_dims
[
2
]
/
strid
e
;
output_shape
[
2
]
=
x_dims
[
2
]
/
blocksiz
e
;
output_shape
[
3
]
=
x_dims
[
3
]
/
strid
e
;
output_shape
[
3
]
=
x_dims
[
3
]
/
blocksiz
e
;
auto
out_dims
=
framework
::
make_ddim
(
output_shape
);
auto
out_dims
=
framework
::
make_ddim
(
output_shape
);
...
@@ -80,20 +80,20 @@ class SpaceToDepthOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -80,20 +80,20 @@ class SpaceToDepthOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor), The output should be a 4D tensor B * C2 * W2 * H2 of "
"(Tensor), The output should be a 4D tensor B * C2 * W2 * H2 of "
"SpaceToDepthOp operator."
);
"SpaceToDepthOp operator."
);
AddAttr
<
int64_t
>
(
AddAttr
<
int64_t
>
(
"
strid
e"
,
"
blocksiz
e"
,
"(int64_t, default 2)
strid
e used to do change Space To Depth."
)
"(int64_t, default 2)
blocksiz
e used to do change Space To Depth."
)
.
SetDefault
(
2
)
.
SetDefault
(
2
)
.
GreaterThan
(
1
);
.
GreaterThan
(
1
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
reorg operator used in Yolo v2.
reorg operator used in Yolo v2.
The equation is: C2 = C1/
stride * stride, W2 = W1 ∗ stride + offset % stride, H2 = H1 ∗ stride + offset / strid
e,
The equation is: C2 = C1/
blocksize * blocksize, W2 = W1 ∗ blocksize + offset % blocksize, H2 = H1 ∗ blocksize + offset / blocksiz
e,
Reshape Input(X) into the shape according to Attr(
strid
e). The
Reshape Input(X) into the shape according to Attr(
blocksiz
e). The
data in Input(X) are unchanged.
data in Input(X) are unchanged.
Examples:
Examples:
1. Given a 4-D tensor Input(X) with a shape [128, 2048, 26, 26], and the
strid
e is 2, the reorg operator will transform Input(X)
1. Given a 4-D tensor Input(X) with a shape [128, 2048, 26, 26], and the
blocksiz
e is 2, the reorg operator will transform Input(X)
into a 4-D tensor with shape [128, 2048, 13, 13] and leaving Input(X)'s data unchanged.
into a 4-D tensor with shape [128, 2048, 13, 13] and leaving Input(X)'s data unchanged.
)DOC"
);
)DOC"
);
...
...
paddle/fluid/operators/space_to_depth_op.h
浏览文件 @
9a74c448
...
@@ -25,19 +25,19 @@ template <typename T>
...
@@ -25,19 +25,19 @@ template <typename T>
class
space_to_depth_compute
{
class
space_to_depth_compute
{
public:
public:
HOSTDEVICE
space_to_depth_compute
(
const
T
*
x
,
int64_t
w
,
int64_t
h
,
int64_t
c
,
HOSTDEVICE
space_to_depth_compute
(
const
T
*
x
,
int64_t
w
,
int64_t
h
,
int64_t
c
,
int64_t
batch
,
int64_t
strid
e
,
int64_t
batch
,
int64_t
blocksiz
e
,
int64_t
forward
,
T
*
out
)
int64_t
forward
,
T
*
out
)
:
x_
(
x
),
:
x_
(
x
),
w_
(
w
),
w_
(
w
),
h_
(
h
),
h_
(
h
),
c_
(
c
),
c_
(
c
),
batch_
(
batch
),
batch_
(
batch
),
stride_
(
strid
e
),
blocksize_
(
blocksiz
e
),
forward_
(
forward
),
forward_
(
forward
),
out_
(
out
)
{}
out_
(
out
)
{}
HOSTDEVICE
void
operator
()(
int64_t
in_index
)
{
HOSTDEVICE
void
operator
()(
int64_t
in_index
)
{
int64_t
out_c
=
c_
/
(
stride_
*
strid
e_
);
int64_t
out_c
=
c_
/
(
blocksize_
*
blocksiz
e_
);
// calculate each dim position with index of tensor
// calculate each dim position with index of tensor
int64_t
b
=
in_index
/
(
c_
*
h_
*
w_
);
int64_t
b
=
in_index
/
(
c_
*
h_
*
w_
);
int64_t
k
=
(
in_index
%
(
c_
*
h_
*
w_
))
/
(
h_
*
w_
);
int64_t
k
=
(
in_index
%
(
c_
*
h_
*
w_
))
/
(
h_
*
w_
);
...
@@ -46,10 +46,10 @@ class space_to_depth_compute {
...
@@ -46,10 +46,10 @@ class space_to_depth_compute {
int64_t
c2
=
k
%
out_c
;
int64_t
c2
=
k
%
out_c
;
int64_t
offset
=
k
/
out_c
;
int64_t
offset
=
k
/
out_c
;
int64_t
w2
=
i
*
stride_
+
offset
%
strid
e_
;
int64_t
w2
=
i
*
blocksize_
+
offset
%
blocksiz
e_
;
int64_t
h2
=
j
*
stride_
+
offset
/
strid
e_
;
int64_t
h2
=
j
*
blocksize_
+
offset
/
blocksiz
e_
;
int64_t
out_index
=
int64_t
out_index
=
w2
+
w_
*
stride_
*
(
h2
+
h_
*
strid
e_
*
(
c2
+
out_c
*
b
));
w2
+
w_
*
blocksize_
*
(
h2
+
h_
*
blocksiz
e_
*
(
c2
+
out_c
*
b
));
if
(
forward_
)
if
(
forward_
)
out_
[
out_index
]
=
x_
[
in_index
];
out_
[
out_index
]
=
x_
[
in_index
];
else
else
...
@@ -58,7 +58,7 @@ class space_to_depth_compute {
...
@@ -58,7 +58,7 @@ class space_to_depth_compute {
private:
private:
const
T
*
x_
;
const
T
*
x_
;
int64_t
w_
,
h_
,
c_
,
batch_
,
strid
e_
,
forward_
;
int64_t
w_
,
h_
,
c_
,
batch_
,
blocksiz
e_
,
forward_
;
T
*
out_
;
T
*
out_
;
};
};
...
@@ -68,7 +68,7 @@ class SpaceToDepthKernel : public framework::OpKernel<T> {
...
@@ -68,7 +68,7 @@ class SpaceToDepthKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
x
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
x
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
stride
=
context
.
Attr
<
int64_t
>
(
"strid
e"
);
auto
blocksize
=
context
.
Attr
<
int64_t
>
(
"blocksiz
e"
);
auto
in_dims
=
x
->
dims
();
auto
in_dims
=
x
->
dims
();
out
->
mutable_data
(
context
.
GetPlace
(),
x
->
type
());
out
->
mutable_data
(
context
.
GetPlace
(),
x
->
type
());
...
@@ -83,8 +83,8 @@ class SpaceToDepthKernel : public framework::OpKernel<T> {
...
@@ -83,8 +83,8 @@ class SpaceToDepthKernel : public framework::OpKernel<T> {
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
out_data
=
out
->
data
<
T
>
();
auto
*
out_data
=
out
->
data
<
T
>
();
paddle
::
operators
::
space_to_depth_compute
<
T
>
computer
(
x_data
,
W
,
H
,
C
,
B
,
paddle
::
operators
::
space_to_depth_compute
<
T
>
computer
(
strid
e
,
1
,
out_data
);
x_data
,
W
,
H
,
C
,
B
,
blocksiz
e
,
1
,
out_data
);
for_range
(
computer
);
for_range
(
computer
);
out
->
Resize
(
out_dims
);
out
->
Resize
(
out_dims
);
...
@@ -99,7 +99,7 @@ class SpaceToDepthGradKernel : public framework::OpKernel<T> {
...
@@ -99,7 +99,7 @@ class SpaceToDepthGradKernel : public framework::OpKernel<T> {
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
auto
*
d_x
=
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
stride
=
context
.
Attr
<
int64_t
>
(
"strid
e"
);
auto
blocksize
=
context
.
Attr
<
int64_t
>
(
"blocksiz
e"
);
auto
in_dims
=
d_x
->
dims
();
auto
in_dims
=
d_x
->
dims
();
d_x
->
mutable_data
(
context
.
GetPlace
(),
d_out
->
type
());
d_x
->
mutable_data
(
context
.
GetPlace
(),
d_out
->
type
());
...
@@ -115,8 +115,8 @@ class SpaceToDepthGradKernel : public framework::OpKernel<T> {
...
@@ -115,8 +115,8 @@ class SpaceToDepthGradKernel : public framework::OpKernel<T> {
auto
*
dx_data
=
d_x
->
data
<
T
>
();
auto
*
dx_data
=
d_x
->
data
<
T
>
();
auto
*
dout_data
=
d_out
->
data
<
T
>
();
auto
*
dout_data
=
d_out
->
data
<
T
>
();
paddle
::
operators
::
space_to_depth_compute
<
T
>
computer
(
dout_data
,
W
,
H
,
C
,
B
,
paddle
::
operators
::
space_to_depth_compute
<
T
>
computer
(
strid
e
,
0
,
dx_data
);
dout_data
,
W
,
H
,
C
,
B
,
blocksiz
e
,
0
,
dx_data
);
for_range
(
computer
);
for_range
(
computer
);
d_x
->
Resize
(
in_dims
);
d_x
->
Resize
(
in_dims
);
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
9a74c448
...
@@ -7485,29 +7485,29 @@ def maxout(x, groups, name=None):
...
@@ -7485,29 +7485,29 @@ def maxout(x, groups, name=None):
return
out
return
out
def
space_to_depth
(
x
,
strid
e
,
name
=
None
):
def
space_to_depth
(
x
,
blocksiz
e
,
name
=
None
):
"""
"""
Gives a
stride to space_to_depth the input LoDtensor
Gives a
blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
R
earranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
This op r
earranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
The attr
strid
e indicates the input block size.
The attr
blocksiz
e indicates the input block size.
space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
to
stride to construct output with shape [batch, channel * stride * stride, height/stride, width/strid
e]:
to
blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksiz
e]:
space_to_depth is used to This operation is useful for resizing the activations between convolutions
space_to_depth is used to This operation is useful for resizing the activations between convolutions
(but keeping all data)
(but keeping all data)
Args:
Args:
x(variable): The input LoDtensor.
x(variable): The input LoDtensor.
stride(variable): The strid
e to select the element on each feature map
blocksize(variable): The blocksiz
e to select the element on each feature map
Returns:
Returns:
Variable: The output LoDtensor.
Variable: The output LoDtensor.
Raises:
Raises:
TypeError:
strid
e type must be a long.
TypeError:
blocksiz
e type must be a long.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -7515,13 +7515,13 @@ def space_to_depth(x, stride, name=None):
...
@@ -7515,13 +7515,13 @@ def space_to_depth(x, stride, name=None):
data = fluid.layers.data(
data = fluid.layers.data(
name='data', shape=[1, 4, 2, 2], dtype='float32')
name='data', shape=[1, 4, 2, 2], dtype='float32')
space_to_depthed = fluid.layers.space_to_depth(
space_to_depthed = fluid.layers.space_to_depth(
x=data,
strid
e=2)
x=data,
blocksiz
e=2)
"""
"""
helper
=
LayerHelper
(
"space_to_depth"
,
**
locals
())
helper
=
LayerHelper
(
"space_to_depth"
,
**
locals
())
if
not
(
isinstance
(
strid
e
,
int
)):
if
not
(
isinstance
(
blocksiz
e
,
int
)):
raise
ValueError
(
"
strid
e must be a python Int"
)
raise
ValueError
(
"
blocksiz
e must be a python Int"
)
if
name
is
None
:
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
out
=
helper
.
create_variable_for_type_inference
(
...
@@ -7533,7 +7533,7 @@ def space_to_depth(x, stride, name=None):
...
@@ -7533,7 +7533,7 @@ def space_to_depth(x, stride, name=None):
helper
.
append_op
(
helper
.
append_op
(
type
=
"space_to_depth"
,
type
=
"space_to_depth"
,
inputs
=
{
"X"
:
x
},
inputs
=
{
"X"
:
x
},
attrs
=
{
"
stride"
:
strid
e
},
attrs
=
{
"
blocksize"
:
blocksiz
e
},
outputs
=
{
"Out"
:
out
})
outputs
=
{
"Out"
:
out
})
return
out
return
out
...
...
python/paddle/fluid/tests/unittests/test_space_to_depth_op.py
浏览文件 @
9a74c448
...
@@ -21,8 +21,8 @@ from op_test import OpTest
...
@@ -21,8 +21,8 @@ from op_test import OpTest
class
TestSpaceToDepthOp
(
OpTest
):
class
TestSpaceToDepthOp
(
OpTest
):
@
staticmethod
@
staticmethod
def
helper
(
in_
,
width
,
height
,
channel
,
batch
,
strid
e
,
forward
,
out_
):
def
helper
(
in_
,
width
,
height
,
channel
,
batch
,
blocksiz
e
,
forward
,
out_
):
channel_out
=
channel
//
(
stride
*
strid
e
)
channel_out
=
channel
//
(
blocksize
*
blocksiz
e
)
for
b
in
range
(
batch
):
for
b
in
range
(
batch
):
for
k
in
range
(
channel
):
for
k
in
range
(
channel
):
for
j
in
range
(
height
):
for
j
in
range
(
height
):
...
@@ -30,10 +30,10 @@ class TestSpaceToDepthOp(OpTest):
...
@@ -30,10 +30,10 @@ class TestSpaceToDepthOp(OpTest):
in_index
=
i
+
width
*
(
j
+
height
*
(
k
+
channel
*
b
))
in_index
=
i
+
width
*
(
j
+
height
*
(
k
+
channel
*
b
))
channel2
=
k
%
channel_out
channel2
=
k
%
channel_out
offset
=
k
//
channel_out
offset
=
k
//
channel_out
width2
=
i
*
stride
+
offset
%
strid
e
width2
=
i
*
blocksize
+
offset
%
blocksiz
e
height2
=
j
*
stride
+
offset
//
strid
e
height2
=
j
*
blocksize
+
offset
//
blocksiz
e
out_index
=
width2
+
width
*
strid
e
*
(
out_index
=
width2
+
width
*
blocksiz
e
*
(
height2
+
height
*
strid
e
*
height2
+
height
*
blocksiz
e
*
(
channel2
+
channel_out
*
b
))
(
channel2
+
channel_out
*
b
))
if
forward
:
if
forward
:
out_
[
out_index
]
=
in_
[
in_index
]
out_
[
out_index
]
=
in_
[
in_index
]
...
@@ -46,10 +46,10 @@ class TestSpaceToDepthOp(OpTest):
...
@@ -46,10 +46,10 @@ class TestSpaceToDepthOp(OpTest):
self
.
op_type
=
"space_to_depth"
self
.
op_type
=
"space_to_depth"
self
.
inputs
=
{
"X"
:
self
.
x
}
self
.
inputs
=
{
"X"
:
self
.
x
}
self
.
helper
(
self
.
x_1d
,
self
.
x
.
shape
[
3
],
self
.
x
.
shape
[
2
],
self
.
helper
(
self
.
x_1d
,
self
.
x
.
shape
[
3
],
self
.
x
.
shape
[
2
],
self
.
x
.
shape
[
1
],
self
.
x
.
shape
[
0
],
self
.
stride
,
self
.
forward
,
self
.
x
.
shape
[
1
],
self
.
x
.
shape
[
0
],
self
.
blocksize
,
self
.
out_1d
)
self
.
forward
,
self
.
out_1d
)
self
.
out
=
np
.
reshape
(
self
.
out_1d
,
self
.
infered_shape
)
self
.
out
=
np
.
reshape
(
self
.
out_1d
,
self
.
infered_shape
)
self
.
attrs
=
{
"
stride"
:
self
.
strid
e
}
self
.
attrs
=
{
"
blocksize"
:
self
.
blocksiz
e
}
self
.
outputs
=
{
"Out"
:
self
.
out
}
self
.
outputs
=
{
"Out"
:
self
.
out
}
def
init_data
(
self
):
def
init_data
(
self
):
...
@@ -57,7 +57,7 @@ class TestSpaceToDepthOp(OpTest):
...
@@ -57,7 +57,7 @@ class TestSpaceToDepthOp(OpTest):
self
.
infered_shape
=
(
32
,
48
,
3
,
3
)
self
.
infered_shape
=
(
32
,
48
,
3
,
3
)
self
.
one_d_len
=
32
*
48
*
3
*
3
self
.
one_d_len
=
32
*
48
*
3
*
3
self
.
strid
e
=
2
self
.
blocksiz
e
=
2
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float32'
)
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float32'
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float32'
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float32'
)
...
@@ -81,7 +81,7 @@ class TestSpaceToDepthOpBasic(TestSpaceToDepthOp):
...
@@ -81,7 +81,7 @@ class TestSpaceToDepthOpBasic(TestSpaceToDepthOp):
self
.
infered_shape
=
(
32
,
32
,
3
,
3
)
self
.
infered_shape
=
(
32
,
32
,
3
,
3
)
self
.
one_d_len
=
32
*
32
*
3
*
3
self
.
one_d_len
=
32
*
32
*
3
*
3
self
.
strid
e
=
2
self
.
blocksiz
e
=
2
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float32'
)
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float32'
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float32'
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float32'
)
...
@@ -95,7 +95,7 @@ class TestSpaceToDepthOpDoubleBasic(TestSpaceToDepthOp):
...
@@ -95,7 +95,7 @@ class TestSpaceToDepthOpDoubleBasic(TestSpaceToDepthOp):
self
.
infered_shape
=
(
32
,
32
,
3
,
3
)
self
.
infered_shape
=
(
32
,
32
,
3
,
3
)
self
.
one_d_len
=
32
*
32
*
3
*
3
self
.
one_d_len
=
32
*
32
*
3
*
3
self
.
strid
e
=
2
self
.
blocksiz
e
=
2
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float64'
)
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float64'
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float64'
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float64'
)
...
@@ -109,7 +109,7 @@ class TestSpaceToDepthOpWithStride3(TestSpaceToDepthOp):
...
@@ -109,7 +109,7 @@ class TestSpaceToDepthOpWithStride3(TestSpaceToDepthOp):
self
.
infered_shape
=
(
32
,
81
,
2
,
2
)
self
.
infered_shape
=
(
32
,
81
,
2
,
2
)
self
.
one_d_len
=
32
*
81
*
2
*
2
self
.
one_d_len
=
32
*
81
*
2
*
2
self
.
strid
e
=
3
self
.
blocksiz
e
=
3
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float32'
)
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float32'
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float32'
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float32'
)
...
@@ -123,7 +123,7 @@ class TestSpaceToDepthOpWithNotSquare(TestSpaceToDepthOp):
...
@@ -123,7 +123,7 @@ class TestSpaceToDepthOpWithNotSquare(TestSpaceToDepthOp):
self
.
infered_shape
=
(
32
,
81
,
3
,
2
)
self
.
infered_shape
=
(
32
,
81
,
3
,
2
)
self
.
one_d_len
=
32
*
81
*
3
*
2
self
.
one_d_len
=
32
*
81
*
3
*
2
self
.
strid
e
=
3
self
.
blocksiz
e
=
3
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float32'
)
self
.
x
=
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
'float32'
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
x_1d
=
np
.
reshape
(
self
.
x
,
self
.
one_d_len
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float32'
)
self
.
out
=
np
.
zeros
(
self
.
infered_shape
).
astype
(
'float32'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录