Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9a17d02c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9a17d02c
编写于
10月 12, 2019
作者:
W
whs
提交者:
GitHub
10月 12, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PaddleSlim] Add pruning demo for yolov3 (#3414)
上级
fe350028
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
480 addition
and
0 deletion
+480
-0
slim/prune/README.md
slim/prune/README.md
+199
-0
slim/prune/compress.py
slim/prune/compress.py
+258
-0
slim/prune/images/MobileNetV1-YoloV3.pdf
slim/prune/images/MobileNetV1-YoloV3.pdf
+0
-0
slim/prune/yolov3_mobilenet_v1_slim.yaml
slim/prune/yolov3_mobilenet_v1_slim.yaml
+23
-0
未找到文件。
slim/prune/README.md
0 → 100644
浏览文件 @
9a17d02c
>运行该示例前请安装Paddle1.6或更高版本
# 检测模型卷积通道剪裁示例
## 概述
该示例使用PaddleSlim提供的
[
卷积通道剪裁压缩策略
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/tutorial.md#2-%E5%8D%B7%E7%A7%AF%E6%A0%B8%E5%89%AA%E8%A3%81%E5%8E%9F%E7%90%86
)
对检测库中的模型进行压缩。
在阅读该示例前,建议您先了解以下内容:
-
<a
href=
"../..README_cn.md"
>
检测库的常规训练方法
</a>
-
[
PaddleSlim使用文档
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md
)
## 配置文件说明
关于配置文件如何编写您可以参考:
-
[
PaddleSlim配置文件编写说明
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md#122-%E9%85%8D%E7%BD%AE%E6%96%87%E4%BB%B6%E7%9A%84%E4%BD%BF%E7%94%A8
)
-
[
裁剪策略配置文件编写说明
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md#22-%E6%A8%A1%E5%9E%8B%E9%80%9A%E9%81%93%E5%89%AA%E8%A3%81
)
其中,配置文件中的
`pruned_params`
需要根据当前模型的网络结构特点设置,它用来指定要裁剪的parameters.
这里以MobileNetV1-YoloV3模型为例,其卷积可以三种:主干网络中的普通卷积,主干网络中的
`depthwise convolution`
和
`yolo block`
里的普通卷积。PaddleSlim暂时无法对
`depthwise convolution`
直接进行剪裁, 因为
`depthwise convolution`
的
`channel`
的变化会同时影响到前后的卷积层。我们这里只对主干网络中的普通卷积和
`yolo block`
里的普通卷积做裁剪。
通过以下方式可视化模型结构:
```
from paddle.fluid.framework import IrGraph
from paddle.fluid import core
graph = IrGraph(core.Graph(train_prog.desc), for_test=True)
marked_nodes = set()
for op in graph.all_op_nodes():
print(op.name())
if op.name().find('conv') > -1:
marked_nodes.add(op)
graph.draw('.', 'forward', marked_nodes)
```
该示例中MobileNetV1-YoloV3模型结构的可视化结果:
<a
href=
"./images/MobileNetV1-YoloV3.pdf"
>
MobileNetV1-YoloV3.pdf
</a>
同时通过以下命令观察目标卷积层的参数(parameters)的名称和shape:
```
for param in fluid.default_main_program().global_block().all_parameters():
if 'weights' in param.name:
print param.name, param.shape
```
从可视化结果,我们可以排除后续会做concat的卷积层,最终得到如下要裁剪的参数名称:
```
conv2_1_sep_weights
conv2_2_sep_weights
conv3_1_sep_weights
conv4_1_sep_weights
conv5_1_sep_weights
conv5_2_sep_weights
conv5_3_sep_weights
conv5_4_sep_weights
conv5_5_sep_weights
conv5_6_sep_weights
yolo_block.0.0.0.conv.weights
yolo_block.0.0.1.conv.weights
yolo_block.0.1.0.conv.weights
yolo_block.0.1.1.conv.weights
yolo_block.1.0.0.conv.weights
yolo_block.1.0.1.conv.weights
yolo_block.1.1.0.conv.weights
yolo_block.1.1.1.conv.weights
yolo_block.1.2.conv.weights
yolo_block.2.0.0.conv.weights
yolo_block.2.0.1.conv.weights
yolo_block.2.1.1.conv.weights
yolo_block.2.2.conv.weights
yolo_block.2.tip.conv.weights
```
```
(conv2_1_sep_weights)|(conv2_2_sep_weights)|(conv3_1_sep_weights)|(conv4_1_sep_weights)|(conv5_1_sep_weights)|(conv5_2_sep_weights)|(conv5_3_sep_weights)|(conv5_4_sep_weights)|(conv5_5_sep_weights)|(conv5_6_sep_weights)|(yolo_block.0.0.0.conv.weights)|(yolo_block.0.0.1.conv.weights)|(yolo_block.0.1.0.conv.weights)|(yolo_block.0.1.1.conv.weights)|(yolo_block.1.0.0.conv.weights)|(yolo_block.1.0.1.conv.weights)|(yolo_block.1.1.0.conv.weights)|(yolo_block.1.1.1.conv.weights)|(yolo_block.1.2.conv.weights)|(yolo_block.2.0.0.conv.weights)|(yolo_block.2.0.1.conv.weights)|(yolo_block.2.1.1.conv.weights)|(yolo_block.2.2.conv.weights)|(yolo_block.2.tip.conv.weights)
```
综上,我们将MobileNetV2配置文件中的
`pruned_params`
设置为以下正则表达式:
```
(conv2_1_sep_weights)|(conv2_2_sep_weights)|(conv3_1_sep_weights)|(conv4_1_sep_weights)|(conv5_1_sep_weights)|(conv5_2_sep_weights)|(conv5_3_sep_weights)|(conv5_4_sep_weights)|(conv5_5_sep_weights)|(conv5_6_sep_weights)|(yolo_block.0.0.0.conv.weights)|(yolo_block.0.0.1.conv.weights)|(yolo_block.0.1.0.conv.weights)|(yolo_block.0.1.1.conv.weights)|(yolo_block.1.0.0.conv.weights)|(yolo_block.1.0.1.conv.weights)|(yolo_block.1.1.0.conv.weights)|(yolo_block.1.1.1.conv.weights)|(yolo_block.1.2.conv.weights)|(yolo_block.2.0.0.conv.weights)|(yolo_block.2.0.1.conv.weights)|(yolo_block.2.1.1.conv.weights)|(yolo_block.2.2.conv.weights)|(yolo_block.2.tip.conv.weights)
```
我们可以用上述操作观察其它检测模型的参数名称规律,然后设置合适的正则表达式来剪裁合适的参数。
## 训练
根据
<a
href=
"../../tools/train.py"
>
PaddleDetection/tools/train.py
</a>
编写压缩脚本compress.py。
在该脚本中定义了Compressor对象,用于执行压缩任务。
### 执行示例
step1: 设置gpu卡
```
export CUDA_VISIBLE_DEVICES=0
```
step2: 开始训练
使用PaddleDetection提供的配置文件在用8卡进行训练:
```
python compress.py \
-s yolov3_mobilenet_v1_slim.yaml \
-c ../../configs/yolov3_mobilenet_v1_voc.yml \
-o max_iters=258 \
-d "../../dataset/voc"
```
>通过命令行覆盖设置max_iters选项,因为PaddleDetection中训练是以`batch`为单位迭代的,并没有涉及`epoch`的概念,但是PaddleSlim需要知道当前训练进行到第几个`epoch`, 所以需要将`max_iters`设置为一个`epoch`内的`batch`的数量。
如果要调整训练卡数,需要调整配置文件
`yolov3_mobilenet_v1_voc.yml`
中的以下参数:
-
**max_iters:**
一个
`epoch`
中batch的数量,需要设置为
`total_num / batch_size`
, 其中
`total_num`
为训练样本总数量,
`batch_size`
为多卡上总的batch size.
-
**YoloTrainFeed.batch_size:**
单张卡上的batch size, 受限于显存大小。
-
**LeaningRate.base_lr:**
根据多卡的总
`batch_size`
调整
`base_lr`
,两者大小正相关,可以简单的按比例进行调整。
-
**LearningRate.schedulers.PiecewiseDecay.milestones:**
请根据batch size的变化对其调整。
-
**LearningRate.schedulers.PiecewiseDecay.LinearWarmup.steps:**
请根据batch size的变化对其进行调整。
以下为4卡训练示例,通过命令行覆盖
`yolov3_mobilenet_v1_voc.yml`
中的参数:
```
python compress.py \
-s yolov3_mobilenet_v1_slim.yaml \
-c ../../configs/yolov3_mobilenet_v1_voc.yml \
-o max_iters=258 \
-o YoloTrainFeed.batch_size = 16 \
-d "../../dataset/voc"
```
以下为2卡训练示例,受显存所制,单卡
`batch_size`
不变,总
`batch_size`
减小,
`base_lr`
减小,一个epoch内batch数量增加,同时需要调整学习率相关参数,如下:
```
python compress.py \
-s yolov3_mobilenet_v1_slim.yaml \
-c ../../configs/yolov3_mobilenet_v1_voc.yml \
-o max_iters=516 \
-o LeaningRate.base_lr=0.005 \ # 0.001 /2
-o YoloTrainFeed.batch_size = 16 \
-o LearningRate.schedulers='[!PiecewiseDecay {gamma: 0.1, milestones: [110000, 124000]}, !LinearWarmup {start_factor: 0., steps: 2000}]' \
-d "../../dataset/voc"
```
通过
`python compress.py --help`
查看可配置参数。
通过
`python ../../tools/configure.py ${option_name} help`
查看如何通过命令行覆盖配置文件
`yolov3_mobilenet_v1_voc.yml`
中的参数。
### 保存断点(checkpoint)
如果在配置文件中设置了
`checkpoint_path`
, 则在压缩任务执行过程中会自动保存断点,当任务异常中断时,
重启任务会自动从
`checkpoint_path`
路径下按数字顺序加载最新的checkpoint文件。如果不想让重启的任务从断点恢复,
需要修改配置文件中的
`checkpoint_path`
,或者将
`checkpoint_path`
路径下文件清空。
>注意:配置文件中的信息不会保存在断点中,重启前对配置文件的修改将会生效。
## 评估
如果在配置文件中设置了
`checkpoint_path`
,则每个epoch会保存一个压缩后的用于评估的模型,
该模型会保存在
`${checkpoint_path}/${epoch_id}/eval_model/`
路径下,包含
`__model__`
和
`__params__`
两个文件。
其中,
`__model__`
用于保存模型结构信息,
`__params__`
用于保存参数(parameters)信息。
如果不需要保存评估模型,可以在定义Compressor对象时,将
`save_eval_model`
选项设置为False(默认为True)。
## 预测
如果在配置文件中设置了
`checkpoint_path`
,并且在定义Compressor对象时指定了
`prune_infer_model`
选项,则每个epoch都会
保存一个
`inference model`
。该模型是通过删除eval_program中多余的operators而得到的。
该模型会保存在
`${checkpoint_path}/${epoch_id}/eval_model/`
路径下,包含
`__model__.infer`
和
`__params__`
两个文件。
其中,
`__model__.infer`
用于保存模型结构信息,
`__params__`
用于保存参数(parameters)信息。
更多关于
`prune_infer_model`
选项的介绍,请参考:
[
Compressor介绍
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md#121-%E5%A6%82%E4%BD%95%E6%94%B9%E5%86%99%E6%99%AE%E9%80%9A%E8%AE%AD%E7%BB%83%E8%84%9A%E6%9C%AC
)
### python预测
在脚本
<a
href=
"../infer.py"
>
PaddleDetection/tools/infer.py
</a>
中展示了如何使用fluid python API加载使用预测模型进行预测。
### PaddleLite
该示例中产出的预测(inference)模型可以直接用PaddleLite进行加载使用。
关于PaddleLite如何使用,请参考:
[
PaddleLite使用文档
](
https://github.com/PaddlePaddle/Paddle-Lite/wiki#%E4%BD%BF%E7%94%A8
)
## 示例结果
### MobileNetV1-YOLO-V3
| FLOPS |top1_acc/top5_acc| model_size |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)|
|---|---|---|---|---|
|baseline|- |- |- |-|
|-10%|- |- |- |-|
|-30%|- |- |- |-|
|-50%|- |- |- |-|
## FAQ
slim/prune/compress.py
0 → 100644
浏览文件 @
9a17d02c
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
multiprocessing
import
numpy
as
np
import
sys
sys
.
path
.
append
(
"../../"
)
from
paddle.fluid.contrib.slim
import
Compressor
def
set_paddle_flags
(
**
kwargs
):
for
key
,
value
in
kwargs
.
items
():
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
os
.
environ
[
key
]
=
str
(
value
)
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags
(
FLAGS_eager_delete_tensor_gb
=
0
,
# enable GC to save memory
)
from
paddle
import
fluid
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.data.data_feed
import
create_reader
from
ppdet.utils.eval_utils
import
parse_fetches
,
eval_results
from
ppdet.utils.cli
import
ArgsParser
from
ppdet.utils.check
import
check_gpu
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.modeling.model_input
import
create_feed
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
def
eval_run
(
exe
,
compile_program
,
reader
,
keys
,
values
,
cls
,
test_feed
):
"""
Run evaluation program, return program outputs.
"""
iter_id
=
0
results
=
[]
if
len
(
cls
)
!=
0
:
values
=
[]
for
i
in
range
(
len
(
cls
)):
_
,
accum_map
=
cls
[
i
].
get_map_var
()
cls
[
i
].
reset
(
exe
)
values
.
append
(
accum_map
)
images_num
=
0
start_time
=
time
.
time
()
has_bbox
=
'bbox'
in
keys
for
data
in
reader
():
data
=
test_feed
.
feed
(
data
)
feed_data
=
{
'image'
:
data
[
'image'
],
'im_size'
:
data
[
'im_size'
]}
outs
=
exe
.
run
(
compile_program
,
feed
=
feed_data
,
fetch_list
=
[
values
[
0
]],
return_numpy
=
False
)
outs
.
append
(
data
[
'gt_box'
])
outs
.
append
(
data
[
'gt_label'
])
outs
.
append
(
data
[
'is_difficult'
])
res
=
{
k
:
(
np
.
array
(
v
),
v
.
recursive_sequence_lengths
())
for
k
,
v
in
zip
(
keys
,
outs
)
}
results
.
append
(
res
)
if
iter_id
%
100
==
0
:
logger
.
info
(
'Test iter {}'
.
format
(
iter_id
))
iter_id
+=
1
images_num
+=
len
(
res
[
'bbox'
][
1
][
0
])
if
has_bbox
else
1
logger
.
info
(
'Test finish iter {}'
.
format
(
iter_id
))
end_time
=
time
.
time
()
fps
=
images_num
/
(
end_time
-
start_time
)
if
has_bbox
:
logger
.
info
(
'Total number of images: {}, inference time: {} fps.'
.
format
(
images_num
,
fps
))
else
:
logger
.
info
(
'Total iteration: {}, inference time: {} batch/s.'
.
format
(
images_num
,
fps
))
return
results
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
if
'architecture'
in
cfg
:
main_arch
=
cfg
.
architecture
else
:
raise
ValueError
(
"'architecture' not specified in config file."
)
merge_config
(
FLAGS
.
opt
)
if
'log_iter'
not
in
cfg
:
cfg
.
log_iter
=
20
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu
(
cfg
.
use_gpu
)
if
cfg
.
use_gpu
:
devices_num
=
fluid
.
core
.
get_cuda_device_count
()
else
:
devices_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
if
'train_feed'
not
in
cfg
:
train_feed
=
create
(
main_arch
+
'TrainFeed'
)
else
:
train_feed
=
create
(
cfg
.
train_feed
)
if
'eval_feed'
not
in
cfg
:
eval_feed
=
create
(
main_arch
+
'EvalFeed'
)
else
:
eval_feed
=
create
(
cfg
.
eval_feed
)
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
lr_builder
=
create
(
'LearningRate'
)
optim_builder
=
create
(
'OptimizerBuilder'
)
# build program
startup_prog
=
fluid
.
Program
()
train_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
model
=
create
(
main_arch
)
train_loader
,
feed_vars
=
create_feed
(
train_feed
,
iterable
=
True
)
train_fetches
=
model
.
train
(
feed_vars
)
loss
=
train_fetches
[
'loss'
]
lr
=
lr_builder
()
optimizer
=
optim_builder
(
lr
)
optimizer
.
minimize
(
loss
)
train_reader
=
create_reader
(
train_feed
,
cfg
.
max_iters
*
devices_num
,
FLAGS
.
dataset_dir
)
train_loader
.
set_sample_list_generator
(
train_reader
,
place
)
# parse train fetches
train_keys
,
train_values
,
_
=
parse_fetches
(
train_fetches
)
train_keys
.
append
(
"lr"
)
train_values
.
append
(
lr
.
name
)
train_fetch_list
=
[]
for
k
,
v
in
zip
(
train_keys
,
train_values
):
train_fetch_list
.
append
((
k
,
v
))
eval_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
eval_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
model
=
create
(
main_arch
)
_
,
test_feed_vars
=
create_feed
(
eval_feed
,
iterable
=
True
)
fetches
=
model
.
eval
(
test_feed_vars
)
eval_prog
=
eval_prog
.
clone
(
True
)
eval_reader
=
create_reader
(
eval_feed
,
args_path
=
FLAGS
.
dataset_dir
)
#eval_pyreader.decorate_sample_list_generator(eval_reader, place)
test_data_feed
=
fluid
.
DataFeeder
(
test_feed_vars
.
values
(),
place
)
# parse eval fetches
extra_keys
=
[]
if
cfg
.
metric
==
'COCO'
:
extra_keys
=
[
'im_info'
,
'im_id'
,
'im_shape'
]
if
cfg
.
metric
==
'VOC'
:
extra_keys
=
[
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_keys
,
eval_values
,
eval_cls
=
parse_fetches
(
fetches
,
eval_prog
,
extra_keys
)
eval_fetch_list
=
[]
for
k
,
v
in
zip
(
eval_keys
,
eval_values
):
eval_fetch_list
.
append
((
k
,
v
))
exe
.
run
(
startup_prog
)
checkpoint
.
load_params
(
exe
,
train_prog
,
cfg
.
pretrain_weights
)
best_box_ap_list
=
[]
def
eval_func
(
program
,
scope
):
#place = fluid.CPUPlace()
#exe = fluid.Executor(place)
results
=
eval_run
(
exe
,
program
,
eval_reader
,
eval_keys
,
eval_values
,
eval_cls
,
test_data_feed
)
resolution
=
None
if
'mask'
in
results
[
0
]:
resolution
=
model
.
mask_head
.
resolution
box_ap_stats
=
eval_results
(
results
,
eval_feed
,
cfg
.
metric
,
cfg
.
num_classes
,
resolution
,
False
,
FLAGS
.
output_eval
)
if
len
(
best_box_ap_list
)
==
0
:
best_box_ap_list
.
append
(
box_ap_stats
[
0
])
elif
box_ap_stats
[
0
]
>
best_box_ap_list
[
0
]:
best_box_ap_list
[
0
]
=
box_ap_stats
[
0
]
checkpoint
.
save
(
exe
,
train_prog
,
os
.
path
.
join
(
save_dir
,
"best_model"
))
logger
.
info
(
"Best test box ap: {}"
.
format
(
best_box_ap_list
[
0
]))
return
best_box_ap_list
[
0
]
test_feed
=
[(
'image'
,
test_feed_vars
[
'image'
].
name
),
(
'im_size'
,
test_feed_vars
[
'im_size'
].
name
)]
com
=
Compressor
(
place
,
fluid
.
global_scope
(),
train_prog
,
train_reader
=
train_reader
,
train_feed_list
=
[(
key
,
value
.
name
)
for
key
,
value
in
feed_vars
.
items
()],
train_fetch_list
=
train_fetch_list
,
eval_program
=
eval_prog
,
eval_reader
=
eval_reader
,
eval_feed_list
=
test_feed
,
eval_func
=
{
'map'
:
eval_func
},
eval_fetch_list
=
[
eval_fetch_list
[
0
]],
save_eval_model
=
True
,
prune_infer_model
=
[[
"image"
,
"im_size"
],[
"multiclass_nms_0.tmp_0"
]],
train_optimizer
=
None
)
com
.
config
(
FLAGS
.
slim_file
)
com
.
run
()
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
.
add_argument
(
"-s"
,
"--slim_file"
,
default
=
None
,
type
=
str
,
help
=
"Config file of PaddleSlim."
)
parser
.
add_argument
(
"--output_eval"
,
default
=
None
,
type
=
str
,
help
=
"Evaluation directory, default is current directory."
)
parser
.
add_argument
(
"-d"
,
"--dataset_dir"
,
default
=
None
,
type
=
str
,
help
=
"Dataset path, same as DataFeed.dataset.dataset_dir"
)
FLAGS
=
parser
.
parse_args
()
main
()
slim/prune/images/MobileNetV1-YoloV3.pdf
0 → 100644
浏览文件 @
9a17d02c
文件已添加
slim/prune/yolov3_mobilenet_v1_slim.yaml
0 → 100644
浏览文件 @
9a17d02c
version
:
1.0
pruners
:
pruner_1
:
class
:
'
StructurePruner'
pruning_axis
:
'
*'
:
0
criterions
:
'
*'
:
'
l1_norm'
strategies
:
uniform_pruning_strategy
:
class
:
'
UniformPruneStrategy'
pruner
:
'
pruner_1'
start_epoch
:
0
target_ratio
:
0.5
pruned_params
:
'
(conv2_1_sep_weights)|(conv2_2_sep_weights)|(conv3_1_sep_weights)|(conv4_1_sep_weights)|(conv5_1_sep_weights)|(conv5_2_sep_weights)|(conv5_3_sep_weights)|(conv5_4_sep_weights)|(conv5_5_sep_weights)|(conv5_6_sep_weights)|(yolo_block.0.0.0.conv.weights)|(yolo_block.0.0.1.conv.weights)|(yolo_block.0.1.0.conv.weights)|(yolo_block.0.1.1.conv.weights)|(yolo_block.1.0.0.conv.weights)|(yolo_block.1.0.1.conv.weights)|(yolo_block.1.1.0.conv.weights)|(yolo_block.1.1.1.conv.weights)|(yolo_block.1.2.conv.weights)|(yolo_block.2.0.0.conv.weights)|(yolo_block.2.0.1.conv.weights)|(yolo_block.2.1.1.conv.weights)|(yolo_block.2.2.conv.weights)|(yolo_block.2.tip.conv.weights)'
metric_name
:
'
acc_top1'
compressor
:
epoch
:
271
eval_epoch
:
10
#init_model: './checkpoints/0' # Please enable this option for loading checkpoint.
checkpoint_path
:
'
./checkpoints/'
strategies
:
-
uniform_pruning_strategy
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录