提交 9a0233de 编写于 作者: Y Yan Chunwei 提交者: GitHub

Feature/tensor array lod pack (#5007)

上级 5d536bcc
......@@ -106,6 +106,15 @@ size_t LoDTensor::NumElements(size_t level, size_t idx) const {
return lod_[level][idx + 1] - lod_[level][idx];
}
size_t LoDTensor::NumInstancesInElement(size_t level, size_t idx) const {
PADDLE_ENFORCE_LT(level, NumLevels());
PADDLE_ENFORCE_LT(idx, NumElements(level));
auto abs_lod = ToAbsOffset(lod());
size_t begin = abs_lod[level][idx];
size_t end = abs_lod[level][idx + 1];
return end - begin;
}
void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) {
auto new_lod = framework::SliceLevels(lod_, level_begin, level_end);
lod_ = new_lod;
......@@ -117,8 +126,15 @@ void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
PADDLE_ENFORCE_LT(elem_begin, NumElements(level));
PADDLE_ENFORCE_LT(elem_end, NumElements(level) + 1);
auto abs_lod = framework::ToAbsOffset(lod());
auto new_lod = framework::SliceInLevel(lod_, level, elem_begin, elem_end);
lod_ = new_lod;
// slice the underlying tensor
size_t begin = abs_lod[level][elem_begin];
size_t end = abs_lod[level][elem_end];
PADDLE_ENFORCE_LT(begin, end, "Cannot shrink, the result tensor is empty.");
ShareDataWith(Slice(begin, end));
}
std::string LoDTensor::SerializeToString() const {
......
......@@ -122,6 +122,12 @@ class LoDTensor : public Tensor {
*/
size_t NumElements(size_t level, size_t idx) const;
/*
* Get the number of instances in the underlying tensor in the `idx`-th
* element.
*/
size_t NumInstancesInElement(size_t level, size_t idx) const;
/*
* Shrink levels[level_begin:level_end]
*/
......@@ -157,5 +163,42 @@ class LoDTensor : public Tensor {
private:
LoD lod_;
};
/*
* Expand the `source` to fit the LoD of `lod`. For example, a `source`
* LoDTensor is
* - LoD: [0, 2]
* - tensor: [a0, a1]
* a `lod` is
* - LoD: [0 3 5]
* returns a new LoDTensor
* - [a0 a0 a0 a1 a1]
*/
template <typename T>
LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level,
const platform::Place& place) {
LoD abs_lod = ToAbsOffset(lod);
const auto& lod_level = lod[level];
size_t num_instances = source.dims()[0];
// new tensor
LoDTensor tensor;
tensor.set_lod(lod);
auto dims = source.dims();
dims[0] = lod_level.back();
tensor.Resize(dims);
tensor.mutable_data<T>(place);
PADDLE_ENFORCE_EQ(num_instances, lod_level.size() - 1);
for (size_t ins = 0; ins < num_instances; ins++) {
for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1]; elem++) {
tensor.Slice(elem, elem + 1)
.CopyFrom(source.Slice(ins, ins + 1), platform::CPUPlace(),
platform::CPUDeviceContext());
}
}
return tensor;
}
} // namespace framework
} // namespace paddle
......@@ -92,11 +92,14 @@ TEST_F(LoDTensorTester, ShrinkInLevel) {
size_t level = 0;
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.ShrinkInLevel(level, 0, 1);
EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL);
EXPECT_EQ(new_lod_tensor.NumElements(0), 1UL);
EXPECT_EQ(new_lod_tensor.NumElements(1), 2UL);
EXPECT_EQ(new_lod_tensor.NumElements(2), 5UL);
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(2), 5UL);
ASSERT_EQ(new_lod_tensor.dims()[0], 12);
for (int i = 0; i < 12 * 128; i++) {
ASSERT_EQ(new_lod_tensor.data<float>()[i], i);
}
level = 1;
new_lod_tensor = lod_tensor_;
......@@ -104,7 +107,41 @@ TEST_F(LoDTensorTester, ShrinkInLevel) {
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 3UL);
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
ASSERT_EQ(new_lod_tensor.dims()[0], 7);
for (int i = 5 * 128; i < 12 * 128; i++) {
ASSERT_EQ(new_lod_tensor.data<float>()[i - 5 * 128], i);
}
LoDTensor t1;
t1.set_lod(lod_tensor_.lod());
t1.ShareDataWith(lod_tensor_);
LoDTensor t2;
t2.set_lod(lod_tensor_.lod());
t2.ShareDataWith(lod_tensor_);
t1.ShrinkInLevel(0, 1, 2);
t2.ShrinkInLevel(0, 0, 1);
EXPECT_NE(t1.data<float>(), t2.data<float>());
EXPECT_NE(t1.data<float>(), lod_tensor_.data<float>());
}
TEST(LodExpand, test) {
LoD lod{{0, 2}};
LoDTensor tensor;
tensor.set_lod(lod);
tensor.Resize({2, 1});
tensor.mutable_data<float>(platform::CPUPlace());
tensor.data<float>()[0] = 0;
tensor.data<float>()[1] = 1;
LoD target;
target.emplace_back(std::vector<size_t>{0, 3, 5});
auto new_tensor = LodExpand<float>(tensor, target, 0UL, platform::CPUPlace());
std::vector<int> result{{0, 0, 0, 1, 1}};
for (size_t i = 0; i < 5; i++) {
ASSERT_EQ(new_tensor.data<float>()[i], result[i]);
}
}
TEST_F(LoDTensorTester, SerializeDeserialize) {
......
......@@ -20,6 +20,8 @@
#include <algorithm>
#include <limits>
#include "paddle/framework/eigen.h"
namespace paddle {
namespace framework {
......@@ -104,10 +106,10 @@ void TensorArray::Write(size_t index, const LoDTensor& value) {
values_.resize(index + 1);
}
values_[index].set_lod(value.lod());
values_[index].Resize(value.dims());
values_[index].mutable_data<value_type>(platform::CPUPlace());
values_[index].CopyFrom(value, platform::CPUPlace(),
platform::CPUDeviceContext());
values_[index].mutable_data<value_type>(value.place());
values_[index].CopyFrom(value, value.place(), platform::CPUDeviceContext());
}
void TensorArray::WriteShared(size_t index, const LoDTensor& value) {
......@@ -116,6 +118,7 @@ void TensorArray::WriteShared(size_t index, const LoDTensor& value) {
values_.resize(index + 1);
}
values_[index].set_lod(value.lod());
values_[index].ShareDataWith(value);
}
......@@ -144,6 +147,156 @@ DySeqMetaBatch TensorArray::Unpack(const LoDTensor& source, int level,
return unpacker.meta;
}
LoDTensor TensorArray::LodPack(size_t level) const {
PADDLE_ENFORCE_GT(size(), 0UL, "no time step exists");
// the levels should be no less than 2
LoDTensor merged;
const LoDTensor *pre, *cur;
pre = &Read(0);
for (size_t step = 1; step < size(); step++) {
cur = &Read(step);
PADDLE_ENFORCE_GT(cur->NumLevels(), 0);
PADDLE_ENFORCE_GT(pre->NumLevels(), 0);
PADDLE_ENFORCE_EQ(pre->NumLevels(), cur->NumLevels());
PADDLE_ENFORCE_EQ(pre->NumElements(level), cur->NumElements(level));
merged = LodPackTwo(*pre, *cur, level);
pre = &merged;
}
return merged;
}
/*
* NOTE currently, only the lowest level supports packing.
* The lowest LoD will be changed, while the relative offsets in levels above
* stay unchanged.
*
* previous step : [0] [1] [3]
* current step: [0 1 2] [2 3] []
* packed to
* [0 0] [0 1] [0 2] [1 2] [1 3] [3]
*/
LoDTensor TensorArray::LodPackTwo(const LoDTensor& pre, const LoDTensor& cur,
size_t level) const {
PADDLE_ENFORCE_EQ(pre.NumLevels(), cur.NumLevels());
PADDLE_ENFORCE_EQ(pre.NumLevels(), level + 1,
"Only the lowest LoD level supports pack temporarily.");
// calculate the result tensor's shape first
size_t num_instances = 0;
for (size_t elem = 0; elem < pre.NumElements(level); elem++) {
size_t prefix_size = pre.NumElements(level, elem);
size_t num_candidates = cur.NumElements(level, elem);
if (num_candidates > 0) {
num_instances += num_candidates * (prefix_size + 1);
} else {
num_instances += prefix_size;
}
}
auto res_dims = pre.dims();
res_dims[0] = num_instances;
LoDTensor result;
result.Resize(res_dims);
result.mutable_data<value_type>(cur.place());
Vector<size_t> last_lod_level;
// copy data
size_t index = 0;
last_lod_level.push_back(index);
for (size_t elem = 0; elem < pre.NumElements(level); elem++) {
size_t prefix_size = pre.NumElements(level, elem);
size_t num_candidates = cur.NumElements(level, elem);
// slice the prefix Tensor
LoDTensor prefix = pre;
prefix.ShrinkInLevel(level, elem, elem + 1);
LoDTensor candidate = cur;
if (num_candidates > 0) {
candidate.ShrinkInLevel(level, elem, elem + 1);
} else { // just push prefix
result.Slice(index, index + prefix_size)
.CopyFrom(prefix, result.place(), platform::CPUDeviceContext());
index += prefix_size;
last_lod_level.push_back(index);
}
for (size_t candi = 0; candi < num_candidates; candi++) {
// TODO(superjom) support GPU
result.Slice(index, index + prefix_size)
.CopyFrom(prefix, result.place(), platform::CPUDeviceContext());
index += prefix_size;
// copy candidate record
result.Slice(index, index + 1)
.CopyFrom(candidate.Slice(candi, candi + 1), result.place(),
platform::CPUDeviceContext());
index++;
last_lod_level.push_back(index);
}
}
// update lod
auto lod = cur.lod();
lod.back() = last_lod_level;
result.set_lod(lod);
return result;
}
/*
* source [0 1 2] [3 4] [5 6 7] will be transformd to a list of LoDTensors such
* as
* [0 3 5] [1 4 6] [2 7] with 1-level LoDs:
* - [0 1 2 3]
* - [0 1 2 3]
* - [0 1 1 2], the [1,1) here means the second sequence is empty
*
* NOTE Unpack a LoDTensor in this approach may result in a big LoD.
*/
void TensorArray::LodUnpack(const LoDTensor& source, size_t level) {
PADDLE_ENFORCE_EQ(level, source.NumLevels() - 1,
"only the lowest LoD level supports unpack.");
int non_empty_instances = -1;
size_t index = 0;
Vector<size_t> lowest_lod_level;
lowest_lod_level.push_back(index);
for (size_t step = 0; non_empty_instances > 0 || non_empty_instances == -1;
step++) {
size_t num_instances = 0;
for (size_t id = 0; id < source.NumElements(level); id++) {
auto instance = source;
instance.ShrinkInLevel(level, id, id + 1);
if (static_cast<size_t>(instance.dims()[0]) > step) {
num_instances++;
index++;
}
lowest_lod_level.push_back(index);
}
// create tensor for this time step
LoDTensor tensor;
auto dims = source.dims();
dims[0] = num_instances;
// set lod
auto lod = source.lod();
lod.back() = lowest_lod_level;
tensor.set_lod(lod);
index = 0;
for (size_t id = 0; id < source.NumElements(level); id++) {
auto instance = source;
instance.ShrinkInLevel(level, id, id + 1);
if (static_cast<size_t>(instance.dims()[0]) > step) {
// copy this instance
tensor.Slice(index, index + 1)
.CopyFrom(instance.Slice(step, step + 1), tensor.place(),
platform::CPUDeviceContext());
index++;
}
}
Write(step, tensor);
}
}
LoDTensor TensorArray::Stack() const {
LoDTensor result;
if (size() == 0) return result;
......
......@@ -86,6 +86,16 @@ class TensorArray {
*/
DySeqMetaBatch Unpack(const LoDTensor &source, int level, bool length_desend);
/*
* Pack an array of LoDTensors to a LoDTensor.
*/
LoDTensor LodPack(size_t level) const;
/*
* Unpack a LoDTensor to an array of LoDTensors.
*/
void LodUnpack(const LoDTensor &source, size_t level);
/*
* Pack the values into a tensor with rank one higher than each tensor in
* values.
......@@ -111,6 +121,9 @@ class TensorArray {
protected:
void Unstack(const LoDTensor &source, bool data_shared) const;
LoDTensor LodPackTwo(const LoDTensor &pre, const LoDTensor &cur,
size_t level) const;
private:
mutable std::vector<LoDTensor> values_;
}; // class TensorArray
......
......@@ -126,5 +126,57 @@ TEST_F(TensorArrayTester, size) {
ASSERT_EQ(ta.size(), static_cast<size_t>(batch_size));
}
TEST(TensorArray, LodPack) {
// three time steps, each step stores a LoDTensors
// - [0] [1]
// - [2 3], [4 5]
// - [6 7] [] [8], [9, 10]
// try to get a LoDTensor with content:
// - [0 2 6]
// - [0 2 7]
// - [0 3]
// - [1 4 8]
// - [1 5 9]
// - [1 5 10]
std::array<LoDTensor, 3> tensors;
tensors[0].Resize(make_ddim({2, 1}));
tensors[1].Resize(make_ddim({4, 1}));
tensors[2].Resize(make_ddim({5, 1}));
int index = 0;
for (auto& t : tensors) {
t.mutable_data<int>(platform::CPUPlace());
for (int i = 0; i < t.dims()[0]; i++) {
t.data<int>()[i] = index;
index++;
}
}
std::array<LoD, 3> lods;
std::vector<std::vector<size_t>> levels{
{0, 1, 2}, {0, 2, 4}, {0, 2, 2, 3, 5}};
for (int i = 0; i < 3; i++) {
lods[i].emplace_back(levels[i].begin(), levels[i].end());
}
TensorArray ta;
for (int i = 0; i < 3; i++) {
tensors[i].set_lod(lods[i]);
ta.Write(i, tensors[i]);
}
auto merged = ta.LodPack(0);
std::vector<int> target_tensor_data{{0, 2, 6, // 0
0, 2, 7, // 1
0, 3, // 2
1, 4, 8, // 3
1, 5, 9, // 5
1, 5, 10}};
EXPECT_EQ(merged.dims()[0], (int)target_tensor_data.size());
for (size_t i = 0; i < target_tensor_data.size(); i++) {
EXPECT_EQ(target_tensor_data[i], merged.data<int>()[i]);
}
}
} // namespace framework
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册