Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
99acf1da
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
99acf1da
编写于
5月 07, 2018
作者:
C
chengduo
提交者:
GitHub
5月 07, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10351 from chengduoZH/feature/update_sparse_parameter
Feature/update sparse parameter
上级
8f8a4768
881e063e
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
404 addition
and
109 deletion
+404
-109
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+3
-1
paddle/fluid/framework/details/broadcast_op_handle.cc
paddle/fluid/framework/details/broadcast_op_handle.cc
+87
-19
paddle/fluid/framework/details/broadcast_op_handle.h
paddle/fluid/framework/details/broadcast_op_handle.h
+22
-1
paddle/fluid/framework/details/broadcast_op_handle_test.cc
paddle/fluid/framework/details/broadcast_op_handle_test.cc
+33
-3
paddle/fluid/framework/details/gather_op_handle.cc
paddle/fluid/framework/details/gather_op_handle.cc
+31
-37
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+92
-6
paddle/fluid/framework/details/multi_devices_graph_builder.h
paddle/fluid/framework/details/multi_devices_graph_builder.h
+15
-3
paddle/fluid/framework/details/reduce_op_handle.cc
paddle/fluid/framework/details/reduce_op_handle.cc
+31
-26
paddle/fluid/framework/details/reduce_op_handle.h
paddle/fluid/framework/details/reduce_op_handle.h
+1
-1
paddle/fluid/framework/details/var_handle.h
paddle/fluid/framework/details/var_handle.h
+1
-1
paddle/fluid/framework/details/variable_visitor.cc
paddle/fluid/framework/details/variable_visitor.cc
+46
-0
paddle/fluid/framework/details/variable_visitor.h
paddle/fluid/framework/details/variable_visitor.h
+3
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+1
-1
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+3
-2
python/paddle/fluid/tests/unittests/test_parallel_executor.py
...on/paddle/fluid/tests/unittests/test_parallel_executor.py
+35
-8
未找到文件。
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
99acf1da
...
...
@@ -15,12 +15,14 @@ if(WITH_GPU)
dynload_cuda
)
set
(
multi_devices_graph_builder_deps nccl_all_reduce_op_handle
)
nv_library
(
reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim dynload_cuda
)
nv_library
(
broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor dynload_cuda
)
else
()
set
(
multi_devices_graph_builder_deps
)
cc_library
(
reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim
)
cc_library
(
broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
endif
()
cc_library
(
broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
cc_library
(
gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor
)
cc_library
(
multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
...
...
paddle/fluid/framework/details/broadcast_op_handle.cc
浏览文件 @
99acf1da
...
...
@@ -19,14 +19,12 @@
namespace
paddle
{
namespace
framework
{
namespace
details
{
BroadcastOpHandle
::
BroadcastOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
)
:
local_scopes_
(
local_scopes
),
places_
(
places
)
{}
void
BroadcastOpHandle
::
RunImpl
()
{
// the input and output may have dummy var.
VarHandle
*
in_var_handle
;
if
(
places_
.
size
()
==
1
)
return
;
// The input and output may have dummy vars.
VarHandle
*
in_var_handle
;
{
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
inputs_
);
PADDLE_ENFORCE_EQ
(
in_var_handles
.
size
(),
1
,
...
...
@@ -55,27 +53,97 @@ void BroadcastOpHandle::RunImpl() {
Tensor
&
in_tensor
=
VariableVisitor
::
GetMutableTensor
(
in_var
);
for
(
auto
*
out
:
out_var_handles
)
{
if
(
*
out
==
*
in_var_handle
)
{
// NOTE: The tensors' Place of input and output must be all on GPU or all on
// CPU.
for
(
auto
*
out_var_handle
:
out_var_handles
)
{
if
(
out_var_handle
->
IsTheSameVar
(
*
in_var_handle
))
{
continue
;
}
auto
&
out_p
=
out
->
place_
;
auto
*
out_var
=
var_scopes
.
at
(
out
->
scope_idx_
)
->
FindVar
(
out
->
name_
);
auto
t_out_p
=
out_var_handle
->
place_
;
auto
*
out_var
=
var_scopes
.
at
(
out_var_handle
->
scope_idx_
)
->
FindVar
(
out_var_handle
->
name_
);
PADDLE_ENFORCE_NOT_NULL
(
out_var
);
PADDLE_ENFORCE_EQ
(
out_p
.
which
(),
in_var_handle
->
place_
.
which
(),
"Places must be all on CPU or all on CUDA."
);
if
(
platform
::
is_gpu_place
(
in_tensor
.
place
()))
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
t_out_p
),
"Places of input and output must be all on GPU."
);
}
else
{
t_out_p
=
platform
::
CPUPlace
();
}
VariableVisitor
::
ShareDimsAndLoD
(
*
in_var
,
out_var
);
VariableVisitor
::
GetMutableTensor
(
out_var
).
mutable_data
(
out_p
,
VariableVisitor
::
GetMutableTensor
(
out_var
).
mutable_data
(
t_
out_p
,
in_tensor
.
type
());
}
if
(
platform
::
is_cpu_place
(
in_tensor
.
place
()))
{
for
(
auto
*
out_var_handle
:
out_var_handles
)
{
if
(
out_var_handle
->
IsTheSameVar
(
*
in_var_handle
))
{
continue
;
}
auto
&
out_p
=
out_var_handle
->
place_
;
auto
*
out_var
=
var_scopes
.
at
(
out_var_handle
->
scope_idx_
)
->
FindVar
(
out_var_handle
->
name_
);
RunAndRecordEvent
(
out_p
,
[
in_tensor
,
out_var
]
{
paddle
::
framework
::
TensorCopy
(
in_tensor
,
platform
::
CPUPlace
(),
&
VariableVisitor
::
GetMutableTensor
(
out_var
));
});
}
}
else
{
#ifdef PADDLE_WITH_CUDA
VarHandle
*
out_handle
=
nullptr
;
int
root_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
in_tensor
.
place
()).
device
;
std
::
vector
<
std
::
function
<
void
()
>>
broadcast_calls
;
for
(
auto
out_var_handle
:
out_var_handles
)
{
Variable
*
out_var
=
var_scopes
.
at
(
out_var_handle
->
scope_idx_
)
->
FindVar
(
out_var_handle
->
name_
);
int
dst_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
out_var_handle
->
place_
).
device
;
auto
&
nccl_ctx
=
nccl_ctxs_
->
at
(
dst_id
);
void
*
send_recv_buffer
=
nullptr
;
if
(
root_id
==
dst_id
)
{
send_recv_buffer
=
const_cast
<
void
*>
(
in_tensor
.
data
<
void
>
());
out_handle
=
out_var_handle
;
}
else
{
send_recv_buffer
=
VariableVisitor
::
GetMutableTensor
(
out_var
).
mutable_data
(
out_var_handle
->
place_
);
}
int
type
=
platform
::
ToNCCLDataType
(
in_tensor
.
type
());
size_t
numel
=
static_cast
<
size_t
>
(
in_tensor
.
numel
());
broadcast_calls
.
emplace_back
(
[
send_recv_buffer
,
numel
,
type
,
root_id
,
&
nccl_ctx
]
{
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclBcast
(
send_recv_buffer
,
numel
,
static_cast
<
ncclDataType_t
>
(
type
),
root_id
,
nccl_ctx
.
comm_
,
nccl_ctx
.
stream
()));
});
}
auto
dev_ctx
=
dev_ctxes_
.
at
(
out_p
);
RunAndRecordEvent
(
out_p
,
[
in_tensor
,
out_var
,
dev_ctx
,
out_p
]
{
paddle
::
framework
::
TensorCopy
(
in_tensor
,
out_p
,
*
(
dev_ctx
),
&
VariableVisitor
::
GetMutableTensor
(
out_var
));
this
->
RunAndRecordEvent
([
&
]
{
{
platform
::
NCCLGroupGuard
guard
;
for
(
auto
&
call
:
broadcast_calls
)
{
call
();
}
}
if
(
!
out_handle
->
IsTheSameVar
(
*
in_var_handle
))
{
auto
out_var
=
var_scopes
.
at
(
in_var_handle
->
scope_idx_
)
->
FindVar
(
out_var_handles
[
0
]
->
name_
);
paddle
::
framework
::
TensorCopy
(
in_tensor
,
in_var_handle
->
place_
,
*
(
dev_ctxes_
.
at
(
in_var_handle
->
place_
)),
&
VariableVisitor
::
GetMutableTensor
(
out_var
));
}
});
#else
PADDLE_THROW
(
"CUDA is not enabled."
);
#endif
}
}
...
...
paddle/fluid/framework/details/broadcast_op_handle.h
浏览文件 @
99acf1da
...
...
@@ -24,14 +24,32 @@
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
BroadcastOpHandle
:
public
OpHandleBase
{
public:
#ifdef PADDLE_WITH_CUDA
BroadcastOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
platform
::
NCCLContextMap
*
nccl_ctxs
)
:
local_scopes_
(
local_scopes
),
places_
(
places
),
nccl_ctxs_
(
nccl_ctxs
)
{
if
(
nccl_ctxs_
)
{
for
(
auto
&
p_ctx
:
nccl_ctxs_
->
contexts_
)
{
dev_ctxes_
[
platform
::
CUDAPlace
(
p_ctx
.
first
)]
=
p_ctx
.
second
.
ctx_
.
get
();
}
}
}
#else
BroadcastOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
);
const
std
::
vector
<
platform
::
Place
>
&
places
)
:
local_scopes_
(
local_scopes
),
places_
(
places
)
{}
#endif
std
::
string
Name
()
const
override
;
...
...
@@ -44,6 +62,9 @@ struct BroadcastOpHandle : public OpHandleBase {
private:
const
std
::
vector
<
Scope
*>
&
local_scopes_
;
const
std
::
vector
<
platform
::
Place
>
&
places_
;
#ifdef PADDLE_WITH_CUDA
const
platform
::
NCCLContextMap
*
nccl_ctxs_
;
#endif
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/broadcast_op_handle_test.cc
浏览文件 @
99acf1da
...
...
@@ -35,15 +35,25 @@ struct TestBroadcastOpHandle {
std
::
unique_ptr
<
OpHandleBase
>
op_handle_
;
std
::
vector
<
std
::
unique_ptr
<
VarHandleBase
>>
vars_
;
std
::
vector
<
p
::
Place
>
gpu_list_
;
bool
use_gpu_
;
#ifdef PADDLE_WITH_CUDA
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
#endif
void
WaitAll
()
{
for
(
size_t
j
=
0
;
j
<
ctxs_
.
size
();
++
j
)
{
ctxs_
[
j
]
->
Wait
();
}
#ifdef PADDLE_WITH_CUDA
if
(
nccl_ctxs_
)
{
nccl_ctxs_
->
WaitAll
();
}
#endif
}
void
InitCtxOnGpu
(
bool
use_gpu
)
{
if
(
use_gpu
)
{
use_gpu_
=
use_gpu
;
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
int
count
=
p
::
GetCUDADeviceCount
();
if
(
count
<=
1
)
{
...
...
@@ -57,6 +67,7 @@ struct TestBroadcastOpHandle {
gpu_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CUDADeviceContext
(
p
));
}
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
gpu_list_
));
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
...
...
@@ -67,6 +78,9 @@ struct TestBroadcastOpHandle {
gpu_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CPUDeviceContext
(
p
));
}
#ifdef PADDLE_WITH_CUDA
nccl_ctxs_
.
reset
(
nullptr
);
#endif
}
}
...
...
@@ -82,7 +96,21 @@ struct TestBroadcastOpHandle {
}
param_scopes_
[
input_scope_idx
]
->
Var
(
"input"
);
op_handle_
.
reset
(
new
BroadcastOpHandle
(
local_scopes_
,
gpu_list_
));
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
BroadcastOpHandle
(
local_scopes_
,
gpu_list_
,
nccl_ctxs_
.
get
()));
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
BroadcastOpHandle
(
local_scopes_
,
gpu_list_
,
nccl_ctxs_
.
get
()));
#else
op_handle_
.
reset
(
new
BroadcastOpHandle
(
local_scopes_
,
gpu_list_
));
#endif
}
auto
*
in_var_handle
=
new
VarHandle
(
1
,
input_scope_idx
,
"input"
,
gpu_list_
[
input_scope_idx
]);
...
...
@@ -97,7 +125,9 @@ struct TestBroadcastOpHandle {
op_handle_
->
AddInput
(
dummy_var_handle
);
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
op_handle_
->
SetDeviceContext
(
gpu_list_
[
j
],
ctxs_
[
j
].
get
());
if
(
!
use_gpu_
)
{
op_handle_
->
SetDeviceContext
(
gpu_list_
[
j
],
ctxs_
[
j
].
get
());
}
VarHandle
*
out_var_handle
=
new
VarHandle
(
2
,
j
,
"out"
,
gpu_list_
[
j
]);
vars_
.
emplace_back
(
out_var_handle
);
op_handle_
->
AddOutput
(
out_var_handle
);
...
...
paddle/fluid/framework/details/gather_op_handle.cc
浏览文件 @
99acf1da
...
...
@@ -25,6 +25,7 @@ GatherOpHandle::GatherOpHandle(const std::vector<Scope *> &local_scopes,
:
local_scopes_
(
local_scopes
),
places_
(
places
)
{}
void
GatherOpHandle
::
RunImpl
()
{
if
(
places_
.
size
()
==
1
)
return
;
// the input and output may have dummy var.
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
inputs_
);
...
...
@@ -35,7 +36,6 @@ void GatherOpHandle::RunImpl() {
VarHandle
*
out_var_handle
;
{
auto
out_var_handles
=
DynamicCast
<
VarHandle
>
(
outputs_
);
PADDLE_ENFORCE_EQ
(
out_var_handles
.
size
(),
1
,
"The number of output should be one."
);
out_var_handle
=
out_var_handles
.
front
();
...
...
@@ -50,68 +50,62 @@ void GatherOpHandle::RunImpl() {
auto
pre_in_var
=
var_scopes
.
at
(
in_0_handle
->
scope_idx_
)
->
FindVar
(
in_0_handle
->
name_
);
PADDLE_ENFORCE_NOT_NULL
(
pre_in_var
);
PADDLE_ENFORCE
(
pre_in_var
->
IsType
<
framework
::
SelectedRows
>
(),
"Currently, gather_op only can gather SelectedRows."
);
auto
pre_place
=
in_0_handle
->
place_
;
PADDLE_ENFORCE_EQ
(
out_var_handle
->
place_
.
which
(),
pre_place
.
which
(),
"The place of input and output should be the same."
);
// Wait input done, this Wait is asynchronous operation
WaitInputVarGenerated
(
in_var_handles
);
auto
&
pre_in_value
=
pre_in_var
->
Get
<
framework
::
SelectedRows
>
();
std
::
vector
<
int64_t
>
out_rows
;
std
::
vector
<
Tensor
>
in_tensors
;
std
::
vector
<
platform
::
Place
>
in_places
;
auto
&
pre_in
=
pre_in_var
->
Get
<
framework
::
SelectedRows
>
();
// gather the inputs
// Gather the inputs
for
(
auto
*
in_handle
:
in_var_handles
)
{
auto
in_p
=
in_handle
->
place_
;
in_places
.
push_back
(
in_p
);
PADDLE_ENFORCE_EQ
(
in_p
.
which
(),
pre_place
.
which
(),
"Places must be all on CPU or all on CUDA."
);
auto
*
in_var
=
var_scopes
.
at
(
in_handle
->
scope_idx_
)
->
FindVar
(
in_handle
->
name_
);
auto
&
in_sr
=
in_var
->
Get
<
framework
::
SelectedRows
>
();
PADDLE_ENFORCE_NOT_NULL
(
in_var
);
VariableVisitor
::
EnforceShapeAndDTypeEQ
(
*
in_var
,
*
pre_in_var
);
PADDLE_ENFORCE_EQ
(
in_sr
.
value
().
type
(),
pre_in
.
value
().
type
(),
"The type of input is not consistent."
);
PADDLE_ENFORCE_EQ
(
pre_in
.
height
(),
in_sr
.
height
(),
"The height of inputs is not consistent."
);
PADDLE_ENFORCE_EQ
(
pre_in
.
GetCompleteDims
(),
in_sr
.
GetCompleteDims
(),
"The dims of inputs is not consistent."
);
auto
&
in_sr_value
=
in_var
->
Get
<
framework
::
SelectedRows
>
();
auto
&
in_sr_rows
=
in_sr
.
rows
();
auto
&
in_sr_rows
=
in_sr
_value
.
rows
();
out_rows
.
insert
(
out_rows
.
end
(),
in_sr_rows
.
begin
(),
in_sr_rows
.
end
());
in_tensors
.
emplace_back
(
in_sr
.
value
());
in_tensors
.
emplace_back
(
in_sr_value
.
value
());
}
// write the output
auto
&
out_place
=
out_var_handle
->
place_
;
auto
out_scope_idx
=
out_var_handle
->
scope_idx_
;
auto
out_var
=
var_scopes
.
at
(
out_scope_idx
)
->
FindVar
(
out_var_handle
->
name_
);
// NOTE: The Places of all input tensor must be all on CPU or all on GPU.
platform
::
Place
t_out_p
=
out_var_handle
->
place_
;
if
(
platform
::
is_gpu_place
(
pre_in_value
.
place
()))
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
t_out_p
),
"Places of input and output must be all on GPU."
);
}
else
{
t_out_p
=
platform
::
CPUPlace
();
}
auto
out
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
out
->
set_height
(
pre_in
.
height
());
out
->
set_rows
(
out_rows
);
auto
out_var
=
var_scopes
.
at
(
out_var_handle
->
scope_idx_
)
->
FindVar
(
out_var_handle
->
name_
);
PADDLE_ENFORCE_NOT_NULL
(
out_var
);
auto
out_value
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
out_value
->
set_height
(
pre_in_value
.
height
());
out_value
->
set_rows
(
out_rows
);
size_t
rows
=
out_rows
.
size
();
DDim
out_dim
=
pre_in
.
GetCompleteDims
();
DDim
out_dim
=
pre_in
_value
.
GetCompleteDims
();
out_dim
[
0
]
=
static_cast
<
int64_t
>
(
rows
);
out
->
mutable_value
()
->
Resize
(
out_dim
);
out
->
mutable_value
()
->
mutable_data
(
out_place
,
pre_in
.
value
().
type
());
Tensor
*
out_tensor
=
out
->
mutable_value
();
out
_value
->
mutable_value
()
->
Resize
(
out_dim
).
mutable_data
(
t_out_p
,
pre_in_value
.
value
().
type
());
Tensor
*
out_tensor
=
out
_value
->
mutable_value
();
// copy
auto
dev_ctx
=
dev_ctxes_
[
out_place
];
RunAndRecordEvent
(
out_place
,
[
in_tensors
,
out_tensor
,
dev_ctx
,
out_place
]
{
auto
dev_ctx
=
dev_ctxes_
[
out_var_handle
->
place_
];
RunAndRecordEvent
(
out_var_handle
->
place_
,
[
in_tensors
,
out_tensor
,
&
dev_ctx
,
t_out_p
]
{
int
s
=
0
,
e
=
0
;
for
(
size_t
j
=
0
;
j
<
in_tensors
.
size
();
++
j
)
{
e
+=
in_tensors
[
j
].
dims
()[
0
];
auto
sub_out
=
out_tensor
->
Slice
(
s
,
e
);
paddle
::
framework
::
TensorCopy
(
in_tensors
[
j
],
out_place
,
*
(
dev_ctx
),
&
sub_out
);
paddle
::
framework
::
TensorCopy
(
in_tensors
[
j
],
t_out_p
,
*
dev_ctx
,
&
sub_out
);
s
=
e
;
}
});
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
99acf1da
...
...
@@ -11,9 +11,11 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
#include "paddle/fluid/framework/details/send_op_handle.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -34,8 +36,8 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
use_default_grad_scale
,
platform
::
NCCLContextMap
*
nccl_ctxs
)
const
std
::
vector
<
Scope
*>
&
local_scopes
,
platform
::
NCCLContextMap
*
nccl_ctxs
,
bool
use_default_grad_scale
)
:
loss_var_name_
(
loss_var_name
),
places_
(
places
),
local_scopes_
(
local_scopes
),
...
...
@@ -105,6 +107,11 @@ bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op,
std
::
unique_ptr
<
SSAGraph
>
MultiDevSSAGraphBuilder
::
Build
(
const
ProgramDesc
&
program
)
const
{
std
::
unordered_map
<
std
::
string
,
proto
::
VarType
::
Type
>
var_types
;
for
(
auto
*
var
:
program
.
Block
(
0
).
AllVars
())
{
var_types
[
var
->
Name
()]
=
var
->
GetType
();
}
auto
graph
=
new
SSAGraph
();
SSAGraph
&
result
=
*
graph
;
std
::
unordered_set
<
std
::
string
>
og_has_been_broadcast
;
...
...
@@ -133,12 +140,17 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
is_forwarding
=
false
;
}
else
{
CreateComputationalOps
(
&
result
,
*
op
,
places_
.
size
());
if
(
!
is_forwarding
)
{
if
(
!
is_forwarding
&&
places_
.
size
()
>
1
)
{
// Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once.
for
(
auto
&
og
:
op
->
OutputArgumentNames
())
{
if
(
IsParameterGradientOnce
(
og
,
&
og_has_been_broadcast
))
{
InsertNCCLAllReduceOp
(
&
result
,
og
);
if
(
IsSparseGradient
(
var_types
,
og
))
{
CreateReduceOp
(
&
result
,
og
,
0
);
CreateBroadcastOp
(
&
result
,
og
,
0
);
}
else
{
InsertNCCLAllReduceOp
(
&
result
,
og
);
}
}
}
}
...
...
@@ -165,6 +177,50 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
return
std
::
unique_ptr
<
SSAGraph
>
(
graph
);
}
bool
MultiDevSSAGraphBuilder
::
IsSparseGradient
(
const
std
::
unordered_map
<
std
::
string
,
proto
::
VarType
::
Type
>
&
var_types
,
const
std
::
string
&
og
)
const
{
PADDLE_ENFORCE
(
var_types
.
count
(
og
)
!=
0
);
if
(
var_types
.
at
(
og
)
==
proto
::
VarType
::
SELECTED_ROWS
)
{
return
true
;
}
return
false
;
}
void
MultiDevSSAGraphBuilder
::
CreateBroadcastOp
(
SSAGraph
*
result
,
const
std
::
string
&
p_name
,
size_t
src_dev_id
)
const
{
#ifdef PADDLE_WITH_CUDA
auto
*
op_handle
=
new
BroadcastOpHandle
(
local_scopes_
,
places_
,
nccl_ctxs_
);
#else
auto
*
op_handle
=
new
BroadcastOpHandle
(
local_scopes_
,
places_
);
#endif
result
->
ops_
.
emplace_back
(
op_handle
);
auto
*
in
=
result
->
vars_
.
at
(
src_dev_id
).
at
(
p_name
).
back
().
get
();
op_handle
->
AddInput
(
in
);
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
&
vars
=
result
->
vars_
.
at
(
i
).
at
(
p_name
);
auto
&
p
=
places_
[
i
];
auto
*
out_var
=
new
VarHandle
(
vars
.
size
(),
i
,
p_name
,
p
);
vars
.
emplace_back
(
out_var
);
op_handle
->
AddOutput
(
out_var
);
#ifndef ADDLE_WITH_CUDA
op_handle
->
SetDeviceContext
(
p
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
));
#endif
}
}
void
MultiDevSSAGraphBuilder
::
CreateComputationalOp
(
SSAGraph
*
result
,
const
OpDesc
&
op
,
int
dev_id
)
const
{
result
->
ops_
.
emplace_back
(
new
ComputationOpHandle
(
op
,
local_scopes_
[
dev_id
],
places_
[
dev_id
]));
CreateOpHandleIOs
(
result
,
op
,
dev_id
);
}
OpDesc
*
MultiDevSSAGraphBuilder
::
GetSendOpDesc
(
const
ProgramDesc
&
program
)
const
{
for
(
auto
*
op
:
program
.
Block
(
0
).
AllOps
())
{
...
...
@@ -174,7 +230,6 @@ OpDesc *MultiDevSSAGraphBuilder::GetSendOpDesc(
}
return
nullptr
;
}
void
MultiDevSSAGraphBuilder
::
InsertNCCLAllReduceOp
(
SSAGraph
*
result
,
const
std
::
string
&
og
)
const
{
#ifdef PADDLE_WITH_CUDA
...
...
@@ -247,6 +302,36 @@ void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
}
}
VarHandle
*
MultiDevSSAGraphBuilder
::
CreateReduceOp
(
SSAGraph
*
result
,
const
std
::
string
&
og
,
int
dst_dev_id
)
const
{
#ifdef PADDLE_WITH_CUDA
result
->
ops_
.
emplace_back
(
new
ReduceOpHandle
(
local_scopes_
,
places_
,
nccl_ctxs_
));
#else
result
->
ops_
.
emplace_back
(
new
ReduceOpHandle
(
local_scopes_
,
places_
));
#endif
auto
*
op_handle
=
result
->
ops_
.
back
().
get
();
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
&
vars
=
result
->
vars_
[
i
][
og
];
#ifndef PADDLE_WITH_CUDA
auto
&
p
=
places_
[
i
];
op_handle
->
SetDeviceContext
(
p
,
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
));
#endif
PADDLE_ENFORCE
(
!
vars
.
empty
());
auto
&
prev_grad
=
vars
.
back
();
op_handle
->
AddInput
(
prev_grad
.
get
());
}
auto
&
vars
=
result
->
vars_
[
dst_dev_id
][
og
];
auto
var
=
new
VarHandle
(
vars
.
size
()
-
1
,
dst_dev_id
,
og
,
places_
[
dst_dev_id
]);
vars
.
emplace_back
(
var
);
op_handle
->
AddOutput
(
var
);
return
var
;
}
void
MultiDevSSAGraphBuilder
::
CreateSendOp
(
SSAGraph
*
result
,
const
OpDesc
&
op
)
const
{
auto
&
p
=
places_
[
0
];
...
...
@@ -263,6 +348,7 @@ bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
return
op
.
OutputArgumentNames
().
size
()
==
1
&&
op
.
OutputArgumentNames
()[
0
]
==
GradVarName
(
loss_var_name_
);
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/multi_devices_graph_builder.h
浏览文件 @
99acf1da
...
...
@@ -13,8 +13,8 @@
// limitations under the License.
#pragma once
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/ssa_graph_builder.h"
...
...
@@ -27,6 +27,7 @@ class NCCLContextMap;
namespace
framework
{
class
Scope
;
namespace
details
{
class
MultiDevSSAGraphBuilder
:
public
SSAGraphBuilder
{
public:
#ifdef PADDLE_WITH_CUDA
...
...
@@ -34,8 +35,8 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
skip_scale_los
s
,
platform
::
NCCLContextMap
*
nccl_ctxs
);
platform
::
NCCLContextMap
*
nccl_ctx
s
,
bool
use_default_grad_scale
);
#else
MultiDevSSAGraphBuilder
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
...
...
@@ -74,6 +75,10 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
size_t
num_places
)
const
;
void
CreateScaleLossGradOp
(
SSAGraph
*
result
)
const
;
VarHandle
*
CreateReduceOp
(
SSAGraph
*
result
,
const
std
::
string
&
og
,
int
dst_dev_id
)
const
;
void
CreateComputationalOp
(
SSAGraph
*
result
,
const
OpDesc
&
op
,
int
dev_id
)
const
;
bool
IsParameterGradientOnce
(
const
std
::
string
&
og
,
...
...
@@ -81,11 +86,18 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
void
InsertNCCLAllReduceOp
(
SSAGraph
*
result
,
const
std
::
string
&
og
)
const
;
void
CreateBroadcastOp
(
SSAGraph
*
result
,
const
std
::
string
&
p_name
,
size_t
src_dev_id
)
const
;
/**
* Get send op in the global block of program.
* nullptr if not found.
*/
OpDesc
*
GetSendOpDesc
(
const
ProgramDesc
&
program
)
const
;
bool
IsSparseGradient
(
const
std
::
unordered_map
<
std
::
string
,
proto
::
VarType
::
Type
>
&
var_types
,
const
std
::
string
&
og
)
const
;
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/reduce_op_handle.cc
浏览文件 @
99acf1da
...
...
@@ -22,6 +22,7 @@ namespace framework {
namespace
details
{
void
ReduceOpHandle
::
RunImpl
()
{
if
(
places_
.
size
()
==
1
)
return
;
// the input and output may have dummy var.
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
inputs_
);
...
...
@@ -51,44 +52,48 @@ void ReduceOpHandle::RunImpl() {
// Wait input done, this Wait is asynchronous operation
WaitInputVarGenerated
(
in_var_handles
);
auto
pre_place
=
in_0_handle
->
place_
;
std
::
vector
<
platform
::
Place
>
in_places
;
auto
pre_in_tensor
=
VariableVisitor
::
GetMutableTensor
(
pre_in_var
);
for
(
auto
*
in_handle
:
in_var_handles
)
{
auto
in_p
=
in_handle
->
place_
;
PADDLE_ENFORCE_EQ
(
in_p
.
which
(),
pre_place
.
which
(),
"Places must be all on CPU or all on CUDA."
);
in_places
.
emplace_back
(
in_p
);
// NOTE: The Places of all input tensor must be all on CPU or all on GPU.
std
::
vector
<
platform
::
Place
>
in_places
;
// used to get dev_ctx
for
(
auto
*
in_handle
:
in_var_handles
)
{
in_places
.
emplace_back
(
in_handle
->
place_
);
auto
in_var
=
var_scopes
.
at
(
in_handle
->
scope_idx_
)
->
FindVar
(
in_handle
->
name_
);
PADDLE_ENFORCE_NOT_NULL
(
in_var
);
auto
in_tensor
=
VariableVisitor
::
GetMutableTensor
(
in_var
);
PADDLE_ENFORCE_EQ
(
in_tensor
.
type
(),
pre_in_tensor
.
type
(),
"The type of input is not consistent."
);
VariableVisitor
::
EnforceShapeAndDTypeEQ
(
*
pre_in_var
,
*
in_var
);
}
auto
out_var
=
var_scopes
.
at
(
out_var_handle
->
scope_idx_
)
->
FindVar
(
out_var_handle
->
name_
);
PADDLE_ENFORCE_NOT_NULL
(
out_var
);
// NOTE: The tensors' Place of input and output must be all on GPU or all on
// CPU.
auto
in_p
=
VariableVisitor
::
GetMutableTensor
(
pre_in_var
).
place
();
platform
::
Place
t_out_p
;
if
(
platform
::
is_gpu_place
(
in_p
))
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
out_var_handle
->
place_
),
"Places of input and output must be all on GPU."
);
t_out_p
=
out_var_handle
->
place_
;
}
else
{
t_out_p
=
platform
::
CPUPlace
();
}
if
(
pre_in_var
->
IsType
<
framework
::
SelectedRows
>
())
{
std
::
vector
<
const
SelectedRows
*>
in_selected_rows
=
GetInputValues
<
SelectedRows
>
(
in_var_handles
,
var_scopes
);
GatherSelectedRows
(
in_selected_rows
,
in_places
,
dev_ctxes_
,
out_var_handle
->
place_
,
GatherSelectedRows
(
in_selected_rows
,
in_places
,
dev_ctxes_
,
t_out_p
,
out_var
->
GetMutable
<
framework
::
SelectedRows
>
());
}
else
{
std
::
vector
<
const
LoDTensor
*>
lod_tensors
=
GetInputValues
<
LoDTensor
>
(
in_var_handles
,
var_scopes
);
if
(
paddle
::
platform
::
is_cpu_place
(
pre_place
))
{
if
(
paddle
::
platform
::
is_cpu_place
(
lod_tensors
[
0
]
->
place
()
))
{
ReduceLoDTensor
func
(
lod_tensors
,
out_var
->
GetMutable
<
framework
::
LoDTensor
>
());
VisitDataType
(
ToDataType
(
lod_tensors
[
0
]
->
type
()),
func
);
}
else
if
(
paddle
::
platform
::
is_gpu_place
(
pre_place
))
{
}
else
if
(
paddle
::
platform
::
is_gpu_place
(
lod_tensors
[
0
]
->
place
()
))
{
#ifdef PADDLE_WITH_CUDA
auto
pre_in
=
pre_in_var
->
Get
<
framework
::
LoDTensor
>
();
VariableVisitor
::
ShareDimsAndLoD
(
*
pre_in_var
,
out_var
);
...
...
@@ -96,7 +101,7 @@ void ReduceOpHandle::RunImpl() {
out_var_handle
->
place_
,
pre_in
.
type
());
auto
out_p
=
out_var_handle
->
place_
;
int
root
=
boost
::
get
<
platform
::
CUDAPlace
>
(
out_p
).
device
;
int
root
_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
out_p
).
device
;
std
::
vector
<
std
::
function
<
void
()
>>
all_reduce_calls
;
for
(
size_t
i
=
0
;
i
<
var_scopes
.
size
();
++
i
)
{
auto
&
p
=
in_places
[
i
];
...
...
@@ -104,23 +109,23 @@ void ReduceOpHandle::RunImpl() {
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
auto
&
nccl_ctx
=
nccl_ctxs_
->
at
(
dev_id
);
auto
stream
=
nccl_ctx
.
stream
();
auto
comm
=
nccl_ctx
.
comm_
;
void
*
buffer
=
const_cast
<
void
*>
(
lod_tensor
.
data
<
void
>
());
void
*
recvbuffer
=
nullptr
;
if
(
root
==
dev_id
)
{
if
(
root
_id
==
dev_id
)
{
recvbuffer
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
()
->
mutable_data
(
out_var_handle
->
place_
);
}
int
type
=
platform
::
ToNCCLDataType
(
lod_tensor
.
type
());
all_reduce_calls
.
emplace_back
([
=
]
{
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclReduce
(
buffer
,
recvbuffer
,
static_cast
<
size_t
>
(
lod_tensor
.
numel
()),
static_cast
<
ncclDataType_t
>
(
type
),
ncclSum
,
root
,
comm
,
stream
));
});
size_t
numel
=
static_cast
<
size_t
>
(
lod_tensor
.
numel
());
all_reduce_calls
.
emplace_back
(
[
buffer
,
recvbuffer
,
type
,
numel
,
root_id
,
&
nccl_ctx
]
{
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclReduce
(
buffer
,
recvbuffer
,
numel
,
static_cast
<
ncclDataType_t
>
(
type
),
ncclSum
,
root_id
,
nccl_ctx
.
comm_
,
nccl_ctx
.
stream
()));
});
}
this
->
RunAndRecordEvent
([
&
]
{
...
...
@@ -130,7 +135,7 @@ void ReduceOpHandle::RunImpl() {
}
});
#else
PADDLE_THROW
(
"CUDA is not
support
."
);
PADDLE_THROW
(
"CUDA is not
enabled
."
);
#endif
}
else
{
PADDLE_THROW
(
"Place should be CPUPlace or CUDAPlace."
);
...
...
paddle/fluid/framework/details/reduce_op_handle.h
浏览文件 @
99acf1da
...
...
@@ -55,7 +55,7 @@ struct ReduceOpHandle : public OpHandleBase {
std
::
string
Name
()
const
override
;
bool
IsMultiDeviceTransfer
()
override
{
return
fals
e
;
};
bool
IsMultiDeviceTransfer
()
override
{
return
tru
e
;
};
protected:
void
RunImpl
()
override
;
...
...
paddle/fluid/framework/details/var_handle.h
浏览文件 @
99acf1da
...
...
@@ -62,7 +62,7 @@ struct VarHandle : public VarHandleBase {
std
::
string
name_
;
platform
::
Place
place_
;
bool
operator
==
(
const
VarHandle
&
o
)
const
{
bool
IsTheSameVar
(
const
VarHandle
&
o
)
const
{
return
o
.
generated_op_
==
generated_op_
&&
o
.
name_
==
name_
&&
o
.
scope_idx_
==
scope_idx_
;
}
...
...
paddle/fluid/framework/details/variable_visitor.cc
浏览文件 @
99acf1da
...
...
@@ -88,6 +88,52 @@ void VariableVisitor::ShareDimsAndLoD(const Variable& src, Variable* trg) {
VisitVariable
(
src
,
&
visitor
);
}
struct
EnforceShapeAndDTypeEQVisitor
{
const
Variable
*
trg_
;
void
operator
()(
const
LoDTensor
&
src
)
{
auto
&
tensor
=
trg_
->
Get
<
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
src
.
place
().
which
(),
tensor
.
place
().
which
(),
"The Places of the two Variable must be all on CPU or all on GPU."
);
PADDLE_ENFORCE_EQ
(
src
.
type
(),
tensor
.
type
(),
"The dtype of the two Variable is not equal."
);
PADDLE_ENFORCE_EQ
(
src
.
dims
(),
tensor
.
dims
(),
"The dims of the two Variable is not equal."
);
PADDLE_ENFORCE_EQ
(
src
.
lod
(),
tensor
.
lod
(),
"The lod of the two Variable is not equal."
);
PADDLE_ENFORCE_EQ
(
src
.
layout
(),
tensor
.
layout
(),
"The layout of the two Variable's tensor is not equal."
);
}
void
operator
()(
const
SelectedRows
&
src
)
{
auto
&
selected_rows
=
trg_
->
Get
<
SelectedRows
>
();
PADDLE_ENFORCE_EQ
(
src
.
place
().
which
(),
selected_rows
.
place
().
which
(),
"The Places of the two Variable must be all on CPU or all on GPU."
);
PADDLE_ENFORCE_EQ
(
src
.
value
().
type
(),
selected_rows
.
value
().
type
(),
"The dtype of the two Variable is not equal."
);
PADDLE_ENFORCE_EQ
(
src
.
value
().
layout
(),
selected_rows
.
value
().
layout
(),
"The layout of the two Variable's tensor is not equal."
);
PADDLE_ENFORCE_EQ
(
src
.
height
(),
selected_rows
.
height
(),
"The height of the two Variable is not equal."
);
PADDLE_ENFORCE_EQ
(
src
.
GetCompleteDims
(),
selected_rows
.
GetCompleteDims
(),
"The dims of the two Variable is not equal."
);
}
template
<
typename
T
>
void
operator
()(
const
T
&
)
{
PADDLE_ENFORCE
(
"EnforceShapeAndDTypeEQ is not supported by type %s"
,
typeid
(
T
).
name
());
}
};
void
VariableVisitor
::
EnforceShapeAndDTypeEQ
(
const
Variable
&
var1
,
const
Variable
&
var2
)
{
EnforceShapeAndDTypeEQVisitor
visitor
{
&
var1
};
VisitVariable
(
var2
,
&
visitor
);
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/variable_visitor.h
浏览文件 @
99acf1da
...
...
@@ -26,6 +26,9 @@ class VariableVisitor {
static
Tensor
&
GetMutableTensor
(
Variable
*
var
);
static
void
ShareDimsAndLoD
(
const
Variable
&
src
,
Variable
*
trg
);
static
void
EnforceShapeAndDTypeEQ
(
const
Variable
&
var1
,
const
Variable
&
var2
);
};
}
// namespace details
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
99acf1da
...
...
@@ -93,7 +93,7 @@ ParallelExecutor::ParallelExecutor(
#ifdef PADDLE_WITH_CUDA
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
use_default_grad_scale
,
member_
->
nccl_ctxs_
.
get
()
);
member_
->
nccl_ctxs_
.
get
(),
use_default_grad_scale
);
#else
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
99acf1da
...
...
@@ -43,7 +43,7 @@ class ParallelExecutor(object):
training.
allow_op_delay(bool, default False): Whether to delay and buffer
some operators together for scheduling or not, which may
improve performance in some cases, defa
lu
t False.
improve performance in some cases, defa
ul
t False.
share_vars_from(ParallelExecutor, default None): If provied,
it will share variables from the specified ParallelExecutor.
use_default_grad_scale(bool, default True): If set True, a default
...
...
@@ -93,7 +93,7 @@ class ParallelExecutor(object):
if
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
num_threads
=
len
(
self
.
_places
)
num_threads
=
len
(
self
.
_places
)
*
2
else
:
num_threads
=
min
(
len
(
self
.
_places
)
*
2
,
multiprocessing
.
cpu_count
())
...
...
@@ -130,6 +130,7 @@ class ParallelExecutor(object):
local_scopes
,
allow_op_delay
,
use_default_grad_scale
)
self
.
scope
=
scope
def
run
(
self
,
fetch_list
,
feed
=
None
,
feed_dict
=
None
):
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor.py
浏览文件 @
99acf1da
...
...
@@ -280,7 +280,7 @@ class TestMNIST(TestParallelExecutorBase):
fluid
.
recordio_writer
.
convert_reader_to_recordio_file
(
'./mnist.recordio'
,
reader
,
feeder
)
def
test_simple_fc
(
self
):
def
check_simple_fc_convergence
(
self
):
self
.
check_network_convergence
(
simple_fc_net
)
self
.
check_network_convergence
(
simple_fc_net
,
allow_op_delay
=
True
)
...
...
@@ -290,7 +290,10 @@ class TestMNIST(TestParallelExecutorBase):
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
})
def
test_simple_fc_parallel_accuracy
(
self
):
def
test_simple_fc
(
self
):
self
.
check_simple_fc_convergence
()
def
check_simple_fc_parallel_accuracy
(
self
):
img
=
numpy
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
numpy
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
single_first_loss
,
single_last_loss
=
self
.
check_network_convergence
(
...
...
@@ -311,7 +314,10 @@ class TestMNIST(TestParallelExecutorBase):
for
p_l
in
parallel_last_loss
:
self
.
assertAlmostEquals
(
p_l
,
single_last_loss
[
0
],
delta
=
1e-6
)
def
test_batchnorm_fc
(
self
):
def
test_simple_fc_parallel_accuracy
(
self
):
self
.
check_simple_fc_parallel_accuracy
()
def
check_batchnorm_fc_convergence
(
self
):
self
.
check_network_convergence
(
fc_with_batchnorm
)
img
=
numpy
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
numpy
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
...
...
@@ -319,6 +325,9 @@ class TestMNIST(TestParallelExecutorBase):
fc_with_batchnorm
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
})
def
test_batchnorm_fc
(
self
):
self
.
check_batchnorm_fc_convergence
()
class
TestResnet
(
TestParallelExecutorBase
):
# @classmethod
...
...
@@ -339,7 +348,7 @@ class TestResnet(TestParallelExecutorBase):
# fluid.recordio_writer.convert_reader_to_recordio_file(
# "./flowers.recordio", reader, feeder, compressor=fluid.core.RecordIOWriter.Compressor.NoCompress)
def
test_resnet
(
self
):
def
check_resnet_convergence
(
self
):
import
functools
batch_size
=
2
self
.
check_network_convergence
(
...
...
@@ -348,6 +357,9 @@ class TestResnet(TestParallelExecutorBase):
iter
=
20
,
batch_size
=
batch_size
)
def
test_resnet
(
self
):
self
.
check_resnet_convergence
()
class
ModelHyperParams
(
object
):
# Dictionary size for source and target language. This model directly uses
...
...
@@ -510,7 +522,7 @@ class TestTransformer(TestParallelExecutorBase):
class
ParallelExecutorTestingDuringTraining
(
unittest
.
TestCase
):
def
test_parallel_testing
(
self
):
def
check_network_convergence
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -550,6 +562,9 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
"Train loss: "
+
str
(
train_loss
)
+
"
\n
Test loss:"
+
str
(
test_loss
))
def
test_parallel
(
self
):
self
.
check_network_convergence
()
import
paddle.dataset.conll05
as
conll05
import
paddle.fluid
as
fluid
...
...
@@ -568,21 +583,26 @@ embedding_name = 'emb'
def
db_lstm
(
word
,
predicate
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
mark
,
**
ignored
):
is_sparse
,
**
ignored
):
# 8 features
predicate_embedding
=
fluid
.
layers
.
embedding
(
input
=
predicate
,
is_sparse
=
is_sparse
,
size
=
[
pred_dict_len
,
word_dim
],
dtype
=
'float32'
,
param_attr
=
'vemb'
)
mark_embedding
=
fluid
.
layers
.
embedding
(
input
=
mark
,
size
=
[
mark_dict_len
,
mark_dim
],
dtype
=
'float32'
)
input
=
mark
,
is_sparse
=
is_sparse
,
size
=
[
mark_dict_len
,
mark_dim
],
dtype
=
'float32'
)
word_input
=
[
word
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
]
emb_layers
=
[
fluid
.
layers
.
embedding
(
size
=
[
word_dict_len
,
word_dim
],
is_sparse
=
is_sparse
,
input
=
x
,
param_attr
=
fluid
.
ParamAttr
(
name
=
embedding_name
,
trainable
=
False
))
for
x
in
word_input
...
...
@@ -632,7 +652,7 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
class
TestCRFModel
(
unittest
.
TestCase
):
def
test_all
(
self
):
def
check_network_convergence
(
self
,
is_sparse
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -652,6 +672,7 @@ class TestCRFModel(unittest.TestCase):
name
=
'ctx_p2_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
mark
=
fluid
.
layers
.
data
(
name
=
'mark_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
feature_out
=
db_lstm
(
**
locals
())
target
=
fluid
.
layers
.
data
(
name
=
'target'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
...
...
@@ -694,3 +715,9 @@ class TestCRFModel(unittest.TestCase):
print
map
(
numpy
.
array
,
pe
.
run
(
feed
=
feeder
.
feed
(
cur_batch
),
fetch_list
=
[
avg_cost
.
name
]))[
0
]
def
test_update_sparse_parameter
(
self
):
self
.
check_network_convergence
(
is_sparse
=
True
)
def
test_update_dense_parameter
(
self
):
self
.
check_network_convergence
(
is_sparse
=
False
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录