Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9942565f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9942565f
编写于
2月 12, 2018
作者:
武
武毅
提交者:
GitHub
2月 12, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8386 from typhoonzero/fix_dist_transpiler_develop
Fix dist transpiler develop
上级
da02a581
dca9941e
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
34 addition
and
56 deletion
+34
-56
paddle/fluid/operators/concat_op.h
paddle/fluid/operators/concat_op.h
+2
-2
paddle/fluid/operators/split_op.h
paddle/fluid/operators/split_op.h
+1
-1
paddle/fluid/operators/strided_memcpy.h
paddle/fluid/operators/strided_memcpy.h
+4
-4
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+27
-46
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+0
-3
未找到文件。
paddle/fluid/operators/concat_op.h
浏览文件 @
9942565f
...
...
@@ -38,7 +38,7 @@ class ConcatKernel : public framework::OpKernel<T> {
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
()
+
output_offset
,
out_stride
,
in
->
data
<
T
>
(),
in_stride
);
in
->
data
<
T
>
(),
in_stride
,
in_stride
[
axis
]
);
output_offset
+=
in_stride
[
axis
];
}
}
...
...
@@ -59,7 +59,7 @@ class ConcatGradKernel : public framework::OpKernel<T> {
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
out_stride
,
in
->
data
<
T
>
()
+
input_offset
,
in_stride
);
in_stride
,
out_stride
[
axis
]
);
input_offset
+=
out_stride
[
axis
];
}
}
...
...
paddle/fluid/operators/split_op.h
浏览文件 @
9942565f
...
...
@@ -38,7 +38,7 @@ class SplitOpKernel : public framework::OpKernel<T> {
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
out_stride
,
in
->
data
<
T
>
()
+
input_offset
,
in_stride
);
in_stride
,
out_stride
[
axis
]
);
input_offset
+=
out_stride
[
axis
];
}
}
...
...
paddle/fluid/operators/strided_memcpy.h
浏览文件 @
9942565f
...
...
@@ -54,7 +54,8 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
int64_t
axis
,
T
*
dst
,
const
framework
::
DDim
&
dst_stride_numel
,
const
T
*
src
,
const
framework
::
DDim
&
src_stride_numel
)
{
const
framework
::
DDim
&
src_stride_numel
,
int64_t
size
)
{
int64_t
before
=
dst_stride_numel
[
0
]
/
dst_stride_numel
[
axis
];
int64_t
src_after
=
src_stride_numel
[
axis
];
int64_t
dst_after
=
dst_stride_numel
[
axis
];
...
...
@@ -82,15 +83,14 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
if
(
platform
::
is_cpu_place
(
place
))
{
auto
&
cpu_place
=
boost
::
get
<
platform
::
CPUPlace
>
(
place
);
memory
::
Copy
(
cpu_place
,
dst
+
i
*
dst_after
,
cpu_place
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
s
rc_after
);
src
+
i
*
src_after
,
sizeof
(
T
)
*
s
ize
);
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
auto
&
cuda_ctx
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
);
memory
::
Copy
(
gpu_place
,
dst
+
i
*
dst_after
,
gpu_place
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
src_after
,
cuda_ctx
.
stream
());
src
+
i
*
src_after
,
sizeof
(
T
)
*
size
,
cuda_ctx
.
stream
());
#else
PADDLE_THROW
(
"Paddle is not compiled with GPU"
);
#endif
...
...
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
9942565f
...
...
@@ -121,6 +121,7 @@ def split_dense_variable(var_list,
block_size
+=
dim1
-
remains
# update split_count after aligning
split_count
=
int
(
math
.
ceil
(
var_numel
/
float
(
block_size
)))
print
(
"###split var "
,
var
.
name
,
var
.
shape
,
block_size
,
split_count
)
for
block_id
in
xrange
(
split_count
):
curr_block_size
=
min
(
block_size
,
var_numel
-
(
(
block_id
)
*
block_size
))
...
...
@@ -191,7 +192,6 @@ class DistributeTranspiler:
for
b
in
param_blocks
:
varname
,
block_id
,
_
=
b
.
split
(
":"
)
send_outputs
.
append
(
param_var_mapping
[
varname
][
int
(
block_id
)])
# let send_op know which endpoint to send which var to, eplist has the same
# order as send_inputs.
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
...
...
@@ -230,21 +230,6 @@ class DistributeTranspiler:
outputs
=
{
"Out"
:
[
orig_param
]},
attrs
=
{
"axis"
:
0
})
self
.
lr_param_mapping
=
self
.
_create_lr_param_mapping
()
def
_create_lr_param_mapping
(
self
):
lr_mapping
=
dict
()
for
_
,
opt_op
in
enumerate
(
self
.
optimize_ops
):
if
not
opt_op
.
inputs
or
not
opt_op
.
inputs
.
has_key
(
"LearningRate"
)
\
or
not
opt_op
.
inputs
.
has_key
(
"Param"
):
continue
lr
=
opt_op
.
inputs
[
"LearningRate"
].
name
param
=
opt_op
.
inputs
[
"Param"
].
name
if
not
lr_mapping
.
has_key
(
lr
):
lr_mapping
.
update
({
lr
:
list
()})
lr_mapping
[
lr
].
append
(
param
)
return
lr_mapping
def
_create_vars_from_blocklist
(
self
,
program
,
block_list
):
# Create respective variables using the block_list
block_map
=
dict
()
...
...
@@ -271,6 +256,7 @@ class DistributeTranspiler:
splited_shape
=
[
rows
]
if
len
(
orig_shape
)
>=
2
:
splited_shape
.
extend
(
orig_shape
[
1
:])
print
(
"###splited: "
,
size
,
rows
,
splited_shape
)
var
=
program
.
global_block
().
create_var
(
name
=
"%s.block%d"
%
(
varname
,
i
),
psersistable
=
False
,
...
...
@@ -278,6 +264,7 @@ class DistributeTranspiler:
type
=
orig_var
.
type
,
shape
=
splited_shape
)
# flattend splited var
var_mapping
[
varname
].
append
(
var
)
print
(
"###created split var "
,
var
)
return
var_mapping
def
_clone_var
(
self
,
block
,
var
):
...
...
@@ -369,18 +356,9 @@ class DistributeTranspiler:
pass
return
orig_shape
def
_fetch_var_names
(
self
,
param_dict
):
res
=
[]
if
not
param_dict
:
return
res
for
_
,
values
in
param_dict
.
iteritems
():
if
not
isinstance
(
values
,
list
):
values
=
[
values
]
res
+=
[
v
.
name
for
v
in
values
]
return
res
def
_append_pserver_ops
(
self
,
optimize_block
,
opt_op
,
endpoint
):
program
=
optimize_block
.
program
pserver_block
=
program
.
global_block
()
new_inputs
=
dict
()
# update param/grad shape first, then other inputs like
# moment can use the updated shape
...
...
@@ -395,11 +373,11 @@ class DistributeTranspiler:
# do not append this op if current endpoint
# is not dealing with this grad block
return
merged_var
=
p
rogram
.
global_block
()
.
vars
[
grad_block
.
name
]
merged_var
=
p
server_block
.
vars
[
grad_block
.
name
]
# append merging ops if trainers > 1
if
self
.
trainers
>
1
:
vars2merge
=
self
.
_create_var_for_trainers
(
p
rogram
.
global_block
()
,
grad_block
,
self
.
trainers
)
p
server_block
,
grad_block
,
self
.
trainers
)
optimize_block
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
vars2merge
},
...
...
@@ -419,29 +397,27 @@ class DistributeTranspiler:
break
if
not
param_block
:
return
tmpvar
=
p
rogram
.
global_block
()
.
create_var
(
tmpvar
=
p
server_block
.
create_var
(
name
=
param_block
.
name
,
persistable
=
True
,
dtype
=
param_block
.
dtype
,
shape
=
param_block
.
shape
)
new_inputs
[
key
]
=
tmpvar
elif
key
==
"LearningRate"
:
# leraning rate variable has already be created by non-optimize op,
# don't create it once again.
new_inputs
[
key
]
=
program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
new_inputs
[
key
]
=
pserver_block
.
vars
[
opt_op
.
input
(
key
)[
0
]]
for
key
in
opt_op
.
input_names
:
new_shape
=
None
if
key
in
[
"Param"
,
"Grad"
,
"LearningRate"
]:
continue
var
=
program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
var
=
self
.
program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
# update accumulator variable shape
param_shape
=
new_inputs
[
"Param"
].
shape
new_shape
=
self
.
_get_optimizer_input_shape
(
opt_op
.
type
,
key
,
var
.
shape
,
param_shape
)
tmpvar
=
p
rogram
.
global_block
()
.
create_var
(
tmpvar
=
p
server_block
.
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
...
...
@@ -449,11 +425,14 @@ class DistributeTranspiler:
new_inputs
[
key
]
=
tmpvar
# change output's ParamOut variable
opt_op
.
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
outputs
=
self
.
_get_output_map_from_op
(
self
.
program
.
global_block
().
vars
,
opt_op
)
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
optimize_block
.
append_op
(
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
outputs
=
o
pt_op
.
o
utputs
,
outputs
=
outputs
,
attrs
=
opt_op
.
attrs
)
def
_append_pserver_non_opt_ops
(
self
,
optimize_block
,
opt_op
):
...
...
@@ -497,11 +476,12 @@ class DistributeTranspiler:
# If one op's input is another op's output or
# one op's output is another op's input, we say
# the two operator is connected.
op1_input_names
=
self
.
_fetch_var_names
(
op1
.
inputs
)
op1_output_names
=
self
.
_fetch_var_names
(
op1
.
outputs
)
op1_input_names
=
op1
.
desc
.
input_arg_names
()
op1_output_names
=
op1
.
desc
.
output_arg_names
()
op2_input_names
=
op2
.
desc
.
input_arg_names
()
op2_output_names
=
op2
.
desc
.
output_arg_names
()
op2_input_names
=
self
.
_fetch_var_names
(
op2
.
inputs
)
op2_output_names
=
self
.
_fetch_var_names
(
op2
.
outputs
)
if
set
(
op1_output_names
)
&
set
(
op2_input_names
)
or
\
set
(
op1_input_names
)
&
set
(
op2_output_names
):
return
True
...
...
@@ -521,8 +501,8 @@ class DistributeTranspiler:
def
_is_opt_op
(
self
,
op
):
# NOTE: It's a HACK implement.
# optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
if
op
.
inputs
and
op
.
inputs
.
has_key
(
"Param"
)
\
and
op
.
inputs
.
has_key
(
"LearningRate"
)
:
if
"Param"
in
op
.
input_names
and
\
"LearningRate"
in
op
.
input_names
:
return
True
return
False
...
...
@@ -530,12 +510,12 @@ class DistributeTranspiler:
param_names
=
[
p
.
name
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
]
if
op
.
input
s
[
"Param"
].
name
in
param_names
:
if
op
.
input
(
"Param"
)
in
param_names
:
return
True
else
:
for
n
in
param_names
:
param
=
op
.
input
s
[
"Param"
].
name
if
same_or_split_var
(
n
,
param
)
and
n
!=
op
.
inputs
[
"Param"
].
name
:
param
=
op
.
input
(
"Param"
)[
0
]
if
same_or_split_var
(
n
,
param
)
and
n
!=
param
:
return
True
return
False
return
False
...
...
@@ -551,6 +531,8 @@ class DistributeTranspiler:
"""
# step5
pserver_program
=
Program
()
print
(
"param mapping on pserver: #### "
,
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
])
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
self
.
_clone_var
(
pserver_program
.
global_block
(),
v
)
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]:
...
...
@@ -564,7 +546,6 @@ class DistributeTranspiler:
persistable
=
True
,
dtype
=
v
.
dtype
,
shape
=
v
.
shape
)
# step6
optimize_block
=
pserver_program
.
create_block
(
0
)
# step 6.1
...
...
python/paddle/v2/fluid/framework.py
浏览文件 @
9942565f
...
...
@@ -400,9 +400,6 @@ class Operator(object):
"""
self
.
block
=
block
self
.
desc
=
desc
# for clone a new operator
self
.
inputs
=
inputs
self
.
outputs
=
outputs
self
.
attrs
=
attrs
if
len
(
self
.
desc
.
type
())
!=
0
:
return
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录