提交 991d4877 编写于 作者: Y YixinKristy

update keypoint readme

上级 d36b9b92
......@@ -7,6 +7,7 @@
</div>
## 目录
- [简介](#简介)
- [模型推荐](#模型推荐)
- [模型库](#模型库)
......@@ -22,8 +23,7 @@
- [Top-Down模型联合部署](#top-down模型联合部署)
- [Bottom-Up模型独立部署](#bottom-up模型独立部署)
- [与多目标跟踪联合部署](#与多目标跟踪模型fairmot联合部署预测)
- [BenchMark](#benchmark)
## 简介
......@@ -32,24 +32,25 @@ PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包
同时,PaddleDetection提供针对移动端设备优化的自研实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md),以满足用户的不同需求。
## 模型推荐
### 移动端模型推荐
### 移动端模型推荐
|检测模型| 关键点模型 | 输入尺寸 | COCO数据集精度| 平均推理耗时 (FP16) | 模型权重 | Paddle-Lite部署模型(FP16)|
| :----| :------------------------ | :-------: | :------: | :------: | :---: | :---: |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) |[PP-TinyPose](./tinypose_128x96.yml) | 检测:192x192<br>关键点:128x96 | 检测mAP:29.0<br>关键点AP:58.1 | 检测耗时:2.37ms<br>关键点耗时:3.27ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) |[PP-TinyPose](./tinypose_256x192.yml)| 检测:320x320<br>关键点:256x192 | 检测mAP:38.5<br>关键点AP:68.8 | 检测耗时:6.30ms<br>关键点耗时:8.33ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams)| [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
| 检测模型 | 关键点模型 | 输入尺寸 | COCO数据集精度 | 平均推理耗时 (FP16) | 模型权重 | Paddle-Lite部署模型(FP16) |
|:--------------------------------------------------------------------------------------------------- |:------------------------------------- |:-------------------------:|:------------------------:|:---------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tinypose_128x96.yml) | 检测:192x192<br>关键点:128x96 | 检测mAP:29.0<br>关键点AP:58.1 | 检测耗时:2.37ms<br>关键点耗时:3.27ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tinypose_256x192.yml) | 检测:320x320<br>关键点:256x192 | 检测mAP:38.5<br>关键点AP:68.8 | 检测耗时:6.30ms<br>关键点耗时:8.33ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
*详细关于PP-TinyPose的使用请参考[文档]((./tiny_pose/README.md))。
### 服务端模型推荐
|检测模型| 关键点模型 | 输入尺寸 | COCO数据集精度| 模型权重 |
| :----| :------------------------ | :-------: | :------: | :------: |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |[HRNet-w32](./hrnet/hrnet_w32_384x288.yml)| 检测:640x640<br>关键点:384x288 | 检测mAP:49.5<br>关键点AP:77.8 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |[HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | 检测:640x640<br>关键点:256x192 | 检测mAP:49.5<br>关键点AP:76.9 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |
| 检测模型 | 关键点模型 | 输入尺寸 | COCO数据集精度 | 模型权重 |
|:----------------------------------------------------------------------------------------------------------------------------- |:------------------------------------------ |:-------------------------:|:------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_384x288.yml) | 检测:640x640<br>关键点:384x288 | 检测mAP:49.5<br>关键点AP:77.8 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | 检测:640x640<br>关键点:256x192 | 检测mAP:49.5<br>关键点AP:76.9 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |
## 模型库
## 模型库
COCO数据集
| 模型 | 方案 |输入尺寸 | AP(coco val) | 模型下载 | 配置文件 |
| :---------------- | -------- | :----------: | :----------------------------------------------------------: | ----------------------------------------------------| ------- |
......@@ -66,7 +67,6 @@ COCO数据集
| LiteHRNet-30 | Top-Down|256x192 | 69.4 | [lite_hrnet_30_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_256x192_coco.yml) |
| LiteHRNet-30 |Top-Down| 384x288 | 72.5 | [lite_hrnet_30_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_384x288_coco.yml) |
备注: Top-Down模型测试AP结果基于GroundTruth标注框
MPII数据集
......@@ -74,7 +74,6 @@ MPII数据集
| :---- | ---|----- | :--------: | :------------: | :----------------------------------------------------------: | -------------------------------------------- |
| HRNet-w32 | Top-Down|256x256 | 90.6 | 38.5 | [hrnet_w32_256x256_mpii.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x256_mpii.pdparams) | [config](./hrnet/hrnet_w32_256x256_mpii.yml) |
我们同时推出了基于LiteHRNet(Top-Down)针对移动端设备优化的实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md), 欢迎体验。
| 模型 | 输入尺寸 | AP (COCO Val) | 单人推理耗时 (FP32)| 单人推理耗时(FP16) | 配置文件 | 模型权重 | 预测部署模型 | Paddle-Lite部署模型(FP32) | Paddle-Lite部署模型(FP16)|
| :------------------------ | :-------: | :------: | :------: |:---: | :---: | :---: | :---: | :---: | :---: |
......@@ -85,7 +84,7 @@ MPII数据集
### 1、环境安装
​ 请参考PaddleDetection [安装文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/docs/tutorials/INSTALL_cn.md)正确安装PaddlePaddle和PaddleDetection即可。
​ 请参考PaddleDetection [安装文档](../../docs/tutorials/INSTALL_cn.md)正确安装PaddlePaddle和PaddleDetection即可。
### 2、数据准备
......@@ -93,9 +92,7 @@ MPII数据集
​ 关于config配置文件内容说明请参考[关键点配置文件说明](../../docs/tutorials/KeyPointConfigGuide_cn.md)
- 请注意,Top-Down方案使用检测框测试时,需要通过检测模型生成bbox.json文件。COCO val2017的检测结果可以参考[Detector having human AP of 56.4 on COCO val2017 dataset](https://paddledet.bj.bcebos.com/data/bbox.json),下载后放在根目录(PaddleDetection)下,然后修改config配置文件中`use_gt_bbox: False`后生效。然后正常执行测试命令即可。
- 请注意,Top-Down方案使用检测框测试时,需要通过检测模型生成bbox.json文件。COCO val2017的检测结果可以参考[Detector having human AP of 56.4 on COCO val2017 dataset](https://paddledet.bj.bcebos.com/data/bbox.json),下载后放在根目录(PaddleDetection)下,然后修改config配置文件中`use_gt_bbox: False`后生效。然后正常执行测试命令即可。
### 3、训练与测试
......@@ -141,7 +138,9 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/hi
```
#### 模型部署
##### Top-Down模型联合部署
```shell
#导出检测模型
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
......@@ -152,15 +151,17 @@ python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o
#detector 检测 + keypoint top-down模型联合部署(联合推理只支持top-down方式)
python deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/ppyolo_r50vd_dcn_2x_coco/ --keypoint_model_dir=output_inference/hrnet_w32_384x288/ --video_file=../video/xxx.mp4 --device=gpu
```
##### Bottom-Up模型独立部署
```shell
#导出模型
python tools/export_model.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=output/higherhrnet_hrnet_w32_512/model_final.pdparams
#部署推理
python deploy/python/keypoint_infer.py --model_dir=output_inference/higherhrnet_hrnet_w32_512/ --image_file=./demo/000000014439_640x640.jpg --device=gpu --threshold=0.5
```
##### 与多目标跟踪模型FairMOT联合部署预测
```shell
......@@ -170,11 +171,16 @@ python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.y
#用导出的跟踪和关键点模型Python联合预测
python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inference/fairmot_dla34_30e_1088x608/ --keypoint_model_dir=output_inference/higherhrnet_hrnet_w32_512/ --video_file={your video name}.mp4 --device=GPU
```
**注意:**
跟踪模型导出教程请参考[文档](../mot/README.md)
## BenchMark
我们给出了不同运行环境下的测试结果,供您在选用模型时参考。详细数据请见[Keypoint Inference Benchmark](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/KeypointBenchmark.md)
## 引用
```
@inproceedings{cheng2020bottom,
title={HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation},
......
[简体中文](README.md) | English
# KeyPoint Detection Models
## Content
- [Introduction](#introduction)
- [Model Recommendation](#model-recommendation)
- [Model Zoo](#model-zoo)
......@@ -16,8 +18,8 @@
- [Deploy Inference](#deploy-inference)
- [Deployment for Top-Down models](#deployment-for-top-down-models)
- [Deployment for Bottom-Up models](#deployment-for-bottom-up-models)
- [joint inference with Multi-Object Tracking model FairMOT](#joint-inference-with-multi-object-tracking-model-fairmot)
- [Joint Inference with Multi-Object Tracking Model FairMOT](#joint-inference-with-multi-object-tracking-model-fairmot)
- [BenchMark](#benchmark)
## Introduction
......@@ -27,29 +29,32 @@ Top-Down detects the object first and then detect the specific keypoint. The acc
Differently, Bottom-Up detects the point first and then group or connect those points to form several instances of human pose. The speed of Bottom-Up is fixed and will not increase by the number of objects, but the accuracy will be lower.
At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README.md) specially for mobile devices.
At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README_en.md) specially for mobile devices.
<div align="center">
<img src="./football_keypoint.gif" width='800'/>
</div>
## Model Recommendation
### Mobile Terminal
|Detection Model| Keypoint Model | Input Size | Accuracy of COCO| Average Inference Time (FP16) | Model Weight | Paddle-Lite Inference Model(FP16)|
| :----| :------------------------ | :-------: | :------: | :------: | :---: | :---: |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) |[PP-TinyPose](./tinypose_128x96.yml) | Detection:192x192<br>Keypoint:128x96 | Detection mAP:29.0<br>Keypoint AP:58.1 | Detection:2.37ms<br>Keypoint:3.27ms | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) |[PP-TinyPose](./tinypose_256x192.yml)| Detection:320x320<br>Keypoint:256x192 | Detection mAP:38.5<br>Keypoint AP:68.8 | Detection:6.30ms<br>Keypoint:8.33ms | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams)| [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
| Detection Model | Keypoint Model | Input Size | Accuracy of COCO | Average Inference Time (FP16) | Model Weight | Paddle-Lite Inference Model(FP16) |
|:--------------------------------------------------------------------------------------------------- |:------------------------------------- |:-------------------------------------:|:--------------------------------------:|:-----------------------------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [PP-TinyPose](./tinypose_128x96.yml) | Detection:192x192<br>Keypoint:128x96 | Detection mAP:29.0<br>Keypoint AP:58.1 | Detection:2.37ms<br>Keypoint:3.27ms | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [PP-TinyPose](./tinypose_256x192.yml) | Detection:320x320<br>Keypoint:256x192 | Detection mAP:38.5<br>Keypoint AP:68.8 | Detection:6.30ms<br>Keypoint:8.33ms | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
*Specific documents of PP-TinyPose, please refer to [Document]((./tiny_pose/README.md))。
### Teminal Server
### Terminal Server
| Detection Model | Keypoint Model | Input Size | Accuracy of COCO | Model Weight |
|:----------------------------------------------------------------------------------------------------------------------------- |:------------------------------------------ |:-------------------------------------:|:--------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_384x288.yml) | Detection:640x640<br>Keypoint:384x288 | Detection mAP:49.5<br>Keypoint AP:77.8 | [Detection](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[Keypoint](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) | [HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | Detection:640x640<br>Keypoint:256x192 | Detection mAP:49.5<br>Keypoint AP:76.9 | [Detection](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[Keypoint](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |
|Detection Model| Keypoint Model | Input Size | Accuracy of COCO| Model Weight |
| :----| :------------------------ | :-------: | :------: | :------: |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |[HRNet-w32](./hrnet/hrnet_w32_384x288.yml)| Detection:640x640<br>Keypoint:384x288 | Detection mAP:49.5<br>Keypoint AP:77.8 | [Detection](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[Keypoint](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |[HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | Detection:640x640<br>Keypoint:256x192 | Detection mAP:49.5<br>Keypoint AP:76.9 | [Detection](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[Keypoint](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |
## Model Zoo
## Model Zoo
COCO Dataset
| Model | Input Size | AP(coco val) | Model Download | Config File |
| :---------------- | -------- | :----------: | :----------------------------------------------------------: | ----------------------------------------------------------- |
......@@ -66,7 +71,6 @@ COCO Dataset
| LiteHRNet-30 | 256x192 | 69.4 | [lite_hrnet_30_256x192_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_256x192_coco.yml) |
| LiteHRNet-30 | 384x288 | 72.5 | [lite_hrnet_30_384x288_coco.pdparams](https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_384x288_coco.pdparams) | [config](./lite_hrnet/lite_hrnet_30_384x288_coco.yml) |
Note:The AP results of Top-Down models are based on bounding boxes in GroundTruth.
MPII Dataset
......@@ -74,14 +78,13 @@ MPII Dataset
| :---- | -------- | :--------: | :------------: | :----------------------------------------------------------: | -------------------------------------------- |
| HRNet-w32 | 256x256 | 90.6 | 38.5 | [hrnet_w32_256x256_mpii.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x256_mpii.pdparams) | [config](./hrnet/hrnet_w32_256x256_mpii.yml) |
We also release [PP-TinyPose](./tiny_pose/README_en.md), a real-time keypoint detection model optimized for mobile devices. Welcome to experience.
## Getting Start
### 1.Environmental Installation
​ Please refer to [PaddleDetection Installation Guild](../../docs/tutorials/INSTALL.md) to install PaddlePaddle and PaddleDetection correctly.
​ Please refer to [PaddleDetection Installation Guide](../../docs/tutorials/INSTALL.md) to install PaddlePaddle and PaddleDetection correctly.
### 2.Dataset Preparation
......@@ -89,7 +92,7 @@ We also release [PP-TinyPose](./tiny_pose/README_en.md), a real-time keypoint de
​ About the description for config files, please refer to [Keypoint Config Guild](../../docs/tutorials/KeyPointConfigGuide_en.md).
- Note that, when testing by detected bounding boxes in Top-Down method, We should get `bbox.json` by a detection model. You can download the detected results for COCO val2017 [(Detector having human AP of 56.4 on COCO val2017 dataset)](https://paddledet.bj.bcebos.com/data/bbox.json) directly, put it at the root path (`PaddleDetection/`), and set `use_gt_bbox: False` in config file.
- Note that, when testing by detected bounding boxes in Top-Down method, We should get `bbox.json` by a detection model. You can download the detected results for COCO val2017 [(Detector having human AP of 56.4 on COCO val2017 dataset)](https://paddledet.bj.bcebos.com/data/bbox.json) directly, put it at the root path (`PaddleDetection/`), and set `use_gt_bbox: False` in config file.
### 3.Training and Testing
......@@ -133,11 +136,12 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/keypoint/higherhrnet/hig
```shell
CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=./output/higherhrnet_hrnet_w32_512/model_final.pdparams --infer_dir=../images/ --draw_threshold=0.5 --save_txt=True
```
#### Deploy Inference
##### Deployment for Top-Down models
```shell
```shell
#Export Detection Model
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
......@@ -147,7 +151,9 @@ python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o
#Deployment for detector and keypoint, which is only for Top-Down models
python deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/ppyolo_r50vd_dcn_2x_coco/ --keypoint_model_dir=output_inference/hrnet_w32_384x288/ --video_file=../video/xxx.mp4 --device=gpu
```
##### Deployment for Bottom-Up models
```shell
#Export model
python tools/export_model.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml -o weights=output/higherhrnet_hrnet_w32_512/model_final.pdparams
......@@ -157,7 +163,7 @@ python tools/export_model.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w
python deploy/python/keypoint_infer.py --model_dir=output_inference/higherhrnet_hrnet_w32_512/ --image_file=./demo/000000014439_640x640.jpg --device=gpu --threshold=0.5
```
##### joint inference with Multi-Object Tracking model FairMOT
##### Joint Inference with Multi-Object Tracking Model FairMOT
```shell
#export FairMOT model
......@@ -166,11 +172,16 @@ python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.y
#joint inference with Multi-Object Tracking model FairMOT
python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inference/fairmot_dla34_30e_1088x608/ --keypoint_model_dir=output_inference/higherhrnet_hrnet_w32_512/ --video_file={your video name}.mp4 --device=GPU
```
**Note:**
To export MOT model, please refer to [Here](../../configs/mot/README_en.md).
## BenchMark
We provide benchmarks in different runtime environments for your reference when choosing models. See [Keypoint Inference Benchmark](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/KeypointBenchmark.md) for details.
## Reference
```
@inproceedings{cheng2020bottom,
title={HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation},
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册