Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
981eccb0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
981eccb0
编写于
3月 03, 2017
作者:
W
wangkuiyi
提交者:
GitHub
3月 03, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1549 from hedaoyuan/sentiment_new_api
Use the sequence_conv_pool define inside the networks.py
上级
c8ccd4f8
84ce7067
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
57 addition
and
138 deletion
+57
-138
demo/sentiment/train_v2.py
demo/sentiment/train_v2.py
+57
-138
未找到文件。
demo/sentiment/train_v2.py
浏览文件 @
981eccb0
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
from
os.path
import
join
as
join_path
import
paddle.trainer_config_helpers.attrs
as
attrs
from
paddle.trainer_config_helpers.poolings
import
MaxPooling
import
paddle.v2.layer
as
layer
import
paddle.v2.activation
as
activation
import
paddle.v2.data_type
as
data_type
import
paddle.v2.dataset.imdb
as
imdb
import
paddle.v2
as
paddle
def
sequence_conv_pool
(
input
,
input_size
,
context_len
,
hidden_size
,
name
=
None
,
context_start
=
None
,
pool_type
=
None
,
context_proj_layer_name
=
None
,
context_proj_param_attr
=
False
,
fc_layer_name
=
None
,
fc_param_attr
=
None
,
fc_bias_attr
=
None
,
fc_act
=
None
,
pool_bias_attr
=
None
,
fc_attr
=
None
,
context_attr
=
None
,
pool_attr
=
None
):
"""
Text convolution pooling layers helper.
Text input => Context Projection => FC Layer => Pooling => Output.
:param name: name of output layer(pooling layer name)
:type name: basestring
:param input: name of input layer
:type input: LayerOutput
:param context_len: context projection length. See
context_projection's document.
:type context_len: int
:param hidden_size: FC Layer size.
:type hidden_size: int
:param context_start: context projection length. See
context_projection's context_start.
:type context_start: int or None
:param pool_type: pooling layer type. See pooling_layer's document.
:type pool_type: BasePoolingType.
:param context_proj_layer_name: context projection layer name.
None if user don't care.
:type context_proj_layer_name: basestring
:param context_proj_param_attr: context projection parameter attribute.
None if user don't care.
:type context_proj_param_attr: ParameterAttribute or None.
:param fc_layer_name: fc layer name. None if user don't care.
:type fc_layer_name: basestring
:param fc_param_attr: fc layer parameter attribute. None if user don't care.
:type fc_param_attr: ParameterAttribute or None
:param fc_bias_attr: fc bias parameter attribute. False if no bias,
None if user don't care.
:type fc_bias_attr: ParameterAttribute or None
:param fc_act: fc layer activation type. None means tanh
:type fc_act: BaseActivation
:param pool_bias_attr: pooling layer bias attr. None if don't care.
False if no bias.
:type pool_bias_attr: ParameterAttribute or None.
:param fc_attr: fc layer extra attribute.
:type fc_attr: ExtraLayerAttribute
:param context_attr: context projection layer extra attribute.
:type context_attr: ExtraLayerAttribute
:param pool_attr: pooling layer extra attribute.
:type pool_attr: ExtraLayerAttribute
:return: output layer name.
:rtype: LayerOutput
"""
# Set Default Value to param
context_proj_layer_name
=
"%s_conv_proj"
%
name
\
if
context_proj_layer_name
is
None
else
context_proj_layer_name
with
layer
.
mixed
(
name
=
context_proj_layer_name
,
size
=
input_size
*
context_len
,
act
=
activation
.
Linear
(),
layer_attr
=
context_attr
)
as
m
:
m
+=
layer
.
context_projection
(
input
=
input
,
context_len
=
context_len
,
context_start
=
context_start
,
padding_attr
=
context_proj_param_attr
)
fc_layer_name
=
"%s_conv_fc"
%
name
\
if
fc_layer_name
is
None
else
fc_layer_name
fl
=
layer
.
fc
(
name
=
fc_layer_name
,
input
=
m
,
size
=
hidden_size
,
act
=
fc_act
,
layer_attr
=
fc_attr
,
param_attr
=
fc_param_attr
,
bias_attr
=
fc_bias_attr
)
return
layer
.
pooling
(
name
=
name
,
input
=
fl
,
pooling_type
=
pool_type
,
bias_attr
=
pool_bias_attr
,
layer_attr
=
pool_attr
)
def
convolution_net
(
input_dim
,
class_dim
=
2
,
emb_dim
=
128
,
hid_dim
=
128
,
is_predict
=
False
):
data
=
layer
.
data
(
"word"
,
data_type
.
integer_value_sequence
(
input_dim
))
emb
=
layer
.
embedding
(
input
=
data
,
size
=
emb_dim
)
conv_3
=
sequence_conv_pool
(
input
=
emb
,
input_size
=
emb_dim
,
context_len
=
3
,
hidden_size
=
hid_dim
)
conv_4
=
sequence_conv_pool
(
input
=
emb
,
input_size
=
emb_dim
,
context_len
=
4
,
hidden_size
=
hid_dim
)
output
=
layer
.
fc
(
input
=
[
conv_3
,
conv_4
],
size
=
class_dim
,
act
=
activation
.
Softmax
())
lbl
=
layer
.
data
(
"label"
,
data_type
.
integer_value
(
2
))
cost
=
layer
.
classification_cost
(
input
=
output
,
label
=
lbl
)
data
=
paddle
.
layer
.
data
(
"word"
,
paddle
.
data_type
.
integer_value_sequence
(
input_dim
))
emb
=
paddle
.
layer
.
embedding
(
input
=
data
,
size
=
emb_dim
)
conv_3
=
paddle
.
networks
.
sequence_conv_pool
(
input
=
emb
,
context_len
=
3
,
hidden_size
=
hid_dim
)
conv_4
=
paddle
.
networks
.
sequence_conv_pool
(
input
=
emb
,
context_len
=
4
,
hidden_size
=
hid_dim
)
output
=
paddle
.
layer
.
fc
(
input
=
[
conv_3
,
conv_4
],
size
=
class_dim
,
act
=
paddle
.
activation
.
Softmax
())
lbl
=
paddle
.
layer
.
data
(
"label"
,
paddle
.
data_type
.
integer_value
(
2
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
output
,
label
=
lbl
)
return
cost
...
...
@@ -152,24 +66,28 @@ def stacked_lstm_net(input_dim,
lstm_para_attr
=
attrs
.
ParameterAttribute
(
initial_std
=
0.
,
learning_rate
=
1.
)
para_attr
=
[
fc_para_attr
,
lstm_para_attr
]
bias_attr
=
attrs
.
ParameterAttribute
(
initial_std
=
0.
,
l2_rate
=
0.
)
relu
=
activation
.
Relu
()
linear
=
activation
.
Linear
()
data
=
layer
.
data
(
"word"
,
data_type
.
integer_value_sequence
(
input_dim
))
emb
=
layer
.
embedding
(
input
=
data
,
size
=
emb_dim
)
fc1
=
layer
.
fc
(
input
=
emb
,
size
=
hid_dim
,
act
=
linear
,
bias_attr
=
bias_attr
)
lstm1
=
layer
.
lstmemory
(
relu
=
paddle
.
activation
.
Relu
()
linear
=
paddle
.
activation
.
Linear
()
data
=
paddle
.
layer
.
data
(
"word"
,
paddle
.
data_type
.
integer_value_sequence
(
input_dim
))
emb
=
paddle
.
layer
.
embedding
(
input
=
data
,
size
=
emb_dim
)
fc1
=
paddle
.
layer
.
fc
(
input
=
emb
,
size
=
hid_dim
,
act
=
linear
,
bias_attr
=
bias_attr
)
lstm1
=
paddle
.
layer
.
lstmemory
(
input
=
fc1
,
act
=
relu
,
bias_attr
=
bias_attr
,
layer_attr
=
layer_attr
)
inputs
=
[
fc1
,
lstm1
]
for
i
in
range
(
2
,
stacked_num
+
1
):
fc
=
layer
.
fc
(
input
=
inputs
,
size
=
hid_dim
,
act
=
linear
,
param_attr
=
para_attr
,
bias_attr
=
bias_attr
)
lstm
=
layer
.
lstmemory
(
fc
=
paddle
.
layer
.
fc
(
input
=
inputs
,
size
=
hid_dim
,
act
=
linear
,
param_attr
=
para_attr
,
bias_attr
=
bias_attr
)
lstm
=
paddle
.
layer
.
lstmemory
(
input
=
fc
,
reverse
=
(
i
%
2
)
==
0
,
act
=
relu
,
...
...
@@ -177,16 +95,16 @@ def stacked_lstm_net(input_dim,
layer_attr
=
layer_attr
)
inputs
=
[
fc
,
lstm
]
fc_last
=
layer
.
pooling
(
input
=
inputs
[
0
],
pooling_type
=
MaxPooling
())
lstm_last
=
layer
.
pooling
(
input
=
inputs
[
1
],
pooling_type
=
MaxPooling
())
output
=
layer
.
fc
(
input
=
[
fc_last
,
lstm_last
],
size
=
class_dim
,
act
=
activation
.
Softmax
(),
bias_attr
=
bias_attr
,
param_attr
=
para_attr
)
fc_last
=
paddle
.
layer
.
pooling
(
input
=
inputs
[
0
],
pooling_type
=
MaxPooling
())
lstm_last
=
paddle
.
layer
.
pooling
(
input
=
inputs
[
1
],
pooling_type
=
MaxPooling
())
output
=
paddle
.
layer
.
fc
(
input
=
[
fc_last
,
lstm_last
],
size
=
class_dim
,
act
=
paddle
.
activation
.
Softmax
(),
bias_attr
=
bias_attr
,
param_attr
=
para_attr
)
lbl
=
layer
.
data
(
"label"
,
data_type
.
integer_value
(
2
))
cost
=
layer
.
classification_cost
(
input
=
output
,
label
=
lbl
)
lbl
=
paddle
.
layer
.
data
(
"label"
,
paddle
.
data_type
.
integer_value
(
2
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
output
,
label
=
lbl
)
return
cost
...
...
@@ -196,7 +114,7 @@ if __name__ == '__main__':
# network config
print
'load dictionary...'
word_dict
=
imdb
.
word_dict
()
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
dict_dim
=
len
(
word_dict
)
class_dim
=
2
...
...
@@ -226,7 +144,8 @@ if __name__ == '__main__':
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
lambda
:
imdb
.
test
(
word_dict
),
batch_size
=
128
),
lambda
:
paddle
.
dataset
.
imdb
.
test
(
word_dict
),
batch_size
=
128
),
reader_dict
=
{
'word'
:
0
,
'label'
:
1
})
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
...
...
@@ -239,7 +158,7 @@ if __name__ == '__main__':
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
lambda
:
imdb
.
train
(
word_dict
),
buf_size
=
1000
),
lambda
:
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
1000
),
batch_size
=
100
),
event_handler
=
event_handler
,
reader_dict
=
{
'word'
:
0
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录