Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
97de98cd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
97de98cd
编写于
12月 07, 2018
作者:
F
frankwhzhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update bpr_loss op code, test=develop
上级
b51df398
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
65 addition
and
81 deletion
+65
-81
paddle/fluid/API.spec
paddle/fluid/API.spec
+13
-2
paddle/fluid/operators/bpr_loss_op.cc
paddle/fluid/operators/bpr_loss_op.cc
+17
-18
paddle/fluid/operators/bpr_loss_op.h
paddle/fluid/operators/bpr_loss_op.h
+33
-59
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+1
-1
python/paddle/fluid/tests/unittests/test_bpr_loss_op.py
python/paddle/fluid/tests/unittests/test_bpr_loss_op.py
+1
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
97de98cd
...
@@ -32,6 +32,13 @@ paddle.fluid.BuildStrategy.ReduceStrategy.__init__ __init__(self: paddle.fluid.c
...
@@ -32,6 +32,13 @@ paddle.fluid.BuildStrategy.ReduceStrategy.__init__ __init__(self: paddle.fluid.c
paddle.fluid.BuildStrategy.__init__ __init__(self: paddle.fluid.core.ParallelExecutor.BuildStrategy) -> None
paddle.fluid.BuildStrategy.__init__ __init__(self: paddle.fluid.core.ParallelExecutor.BuildStrategy) -> None
paddle.fluid.create_lod_tensor ArgSpec(args=['data', 'recursive_seq_lens', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.create_lod_tensor ArgSpec(args=['data', 'recursive_seq_lens', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.create_random_int_lodtensor ArgSpec(args=['recursive_seq_lens', 'base_shape', 'place', 'low', 'high'], varargs=None, keywords=None, defaults=None)
paddle.fluid.create_random_int_lodtensor ArgSpec(args=['recursive_seq_lens', 'base_shape', 'place', 'low', 'high'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.__init__ ArgSpec(args=['self', 'proto_file'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.desc ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.set_batch_size ArgSpec(args=['self', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.set_dense_slots ArgSpec(args=['self', 'dense_slots_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.set_use_slots ArgSpec(args=['self', 'use_slots_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.AsyncExecutor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.AsyncExecutor.run ArgSpec(args=['self', 'program', 'data_feed', 'filelist', 'thread_num', 'fetch', 'debug'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.io.save_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.io.save_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.io.save_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
...
@@ -70,7 +77,7 @@ paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'use_cudnn', 'name']
...
@@ -70,7 +77,7 @@ paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'use_cudnn', 'name']
paddle.fluid.layers.softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(True, None))
paddle.fluid.layers.softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(True, None))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'
], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, Non
e, False, False))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'
, 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, Fals
e, False, False))
paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
...
@@ -176,7 +183,7 @@ paddle.fluid.layers.clip ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None,
...
@@ -176,7 +183,7 @@ paddle.fluid.layers.clip ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None,
paddle.fluid.layers.clip_by_norm ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.clip_by_norm ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None))
paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', '
name'], varargs=None, keywords=None, defaults=(None,
))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', '
ignore_index', 'name'], varargs=None, keywords=None, defaults=(-100, None
))
paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.space_to_depth ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.space_to_depth ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.affine_grid ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.affine_grid ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,))
...
@@ -188,6 +195,9 @@ paddle.fluid.layers.grid_sampler ArgSpec(args=['x', 'grid', 'name'], varargs=Non
...
@@ -188,6 +195,9 @@ paddle.fluid.layers.grid_sampler ArgSpec(args=['x', 'grid', 'name'], varargs=Non
paddle.fluid.layers.log_loss ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None))
paddle.fluid.layers.log_loss ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None))
paddle.fluid.layers.add_position_encoding ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.add_position_encoding ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
@@ -292,6 +302,7 @@ paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'i
...
@@ -292,6 +302,7 @@ paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'i
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
...
...
paddle/fluid/operators/bpr_loss_op.cc
浏览文件 @
97de98cd
...
@@ -23,19 +23,18 @@ class BprLossOp : public framework::OperatorWithKernel {
...
@@ -23,19 +23,18 @@ class BprLossOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label
_
Pos"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LabelPos"
),
"Input(Label
_
Pos) should be not null."
);
"Input(LabelPos) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
"Output(Y) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
"Output(Y) should be not null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_Pos_dims
=
ctx
->
GetInputDim
(
"Label
_
Pos"
);
auto
label_Pos_dims
=
ctx
->
GetInputDim
(
"LabelPos"
);
int
rank
=
x_dims
.
size
();
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
rank
,
label_Pos_dims
.
size
(),
rank
,
label_Pos_dims
.
size
(),
"Input(X) and Input(LabelPos) shall have the same rank."
);
"Input(X) and Input(Label_Pos) shall have the same rank."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
label_Pos_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
label_Pos_dims
,
0
,
rank
-
1
),
"Input(X) and Input(Label
_
Pos) shall have the same shape "
"Input(X) and Input(LabelPos) shall have the same shape "
"except the last dimension."
);
"except the last dimension."
);
auto
y_dims
=
x_dims
;
auto
y_dims
=
x_dims
;
...
@@ -61,25 +60,25 @@ class BprLossGradientOp : public framework::OperatorWithKernel {
...
@@ -61,25 +60,25 @@ class BprLossGradientOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label
_
Pos"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LabelPos"
),
"Input(Label
_
Pos) should be not null."
);
"Input(LabelPos) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
"Input(Y@GRAD) shoudl be not null."
);
"Input(Y@GRAD) shoudl be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output(X@GRAD) should be not null."
);
"Output(X@GRAD) should be not null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_pos_dims
=
ctx
->
GetInputDim
(
"Label
_
Pos"
);
auto
label_pos_dims
=
ctx
->
GetInputDim
(
"LabelPos"
);
auto
dy_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
auto
dy_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
int
rank
=
x_dims
.
size
();
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
rank
,
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
rank
,
"Input(Y@Grad) and Input(X) should have the same rank."
);
"Input(Y@Grad) and Input(X) should have the same rank."
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
label_pos_dims
.
size
(),
rank
,
label_pos_dims
.
size
(),
rank
,
"Input(Label
_
Pos) and Input(X) should have the same rank."
);
"Input(LabelPos) and Input(X) should have the same rank."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
label_pos_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
label_pos_dims
,
0
,
rank
-
1
),
"The Input(X) and Input(Label
_
Pos) should have the same "
"The Input(X) and Input(LabelPos) should have the same "
"shape except the last dimension."
);
"shape except the last dimension."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
dy_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
dy_dims
,
0
,
rank
-
1
),
...
@@ -88,7 +87,7 @@ class BprLossGradientOp : public framework::OperatorWithKernel {
...
@@ -88,7 +87,7 @@ class BprLossGradientOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
dy_dims
[
rank
-
1
],
1
,
PADDLE_ENFORCE_EQ
(
dy_dims
[
rank
-
1
],
1
,
"The last dimension of Input(Y@Grad) should be 1."
);
"The last dimension of Input(Y@Grad) should be 1."
);
PADDLE_ENFORCE_EQ
(
label_pos_dims
[
rank
-
1
],
1
,
PADDLE_ENFORCE_EQ
(
label_pos_dims
[
rank
-
1
],
1
,
" the last dimension of Input(Label
_
Pos) should be 1."
);
" the last dimension of Input(LabelPos) should be 1."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
}
}
...
@@ -112,7 +111,7 @@ class BprLossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -112,7 +111,7 @@ class BprLossOpMaker : public framework::OpProtoAndCheckerMaker {
"size is equal to the number of classes. This input is a "
"size is equal to the number of classes. This input is a "
"real number."
);
"real number."
);
AddInput
(
AddInput
(
"Label
_
Pos"
,
"LabelPos"
,
"(Tensor), the tensor which represents the ground truth. It has the "
"(Tensor), the tensor which represents the ground truth. It has the "
"same shape with 'X' except the last dimension. the last dimension "
"same shape with 'X' except the last dimension. the last dimension "
"size is 1."
);
"size is 1."
);
...
@@ -121,14 +120,14 @@ class BprLossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -121,14 +120,14 @@ class BprLossOpMaker : public framework::OpProtoAndCheckerMaker {
"with 'X' except that the last dimension size is 1. It "
"with 'X' except that the last dimension size is 1. It "
"represents the sequence bpr loss."
);
"represents the sequence bpr loss."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
B
pr
Loss Operator.
B
ayesian Personalized Ranking
Loss Operator.
This operator belongs to pairwise ranking loss. Label
_p
os is the desired item.
This operator belongs to pairwise ranking loss. Label
P
os is the desired item.
The loss at a given point in one se
e
sion is defined as:
The loss at a given point in one se
s
sion is defined as:
$Y[i] = -\frac{1}{N_{i}} * \sum_{j=0}^{N_{i}}\log(\sigma(X[i, Label[i]]-X[i, j]))$
$Y[i] = -\frac{1}{N_{i}} * \sum_{j=0}^{N_{i}}\log(\sigma(X[i, Label[i]]-X[i, j]))$
Learn more details by reading paper <session-based recommendations with recurrent
Learn more details by reading paper <session-based recommendations with recurrent
neural networks>
.
neural networks>
(https://arxiv.org/abs/1511.06939)
)DOC"
);
)DOC"
);
}
}
...
...
paddle/fluid/operators/bpr_loss_op.h
浏览文件 @
97de98cd
...
@@ -39,22 +39,22 @@ class BprLossOpKernel : public framework::OpKernel<T> {
...
@@ -39,22 +39,22 @@ class BprLossOpKernel : public framework::OpKernel<T> {
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
label
s_Pos
=
ctx
.
Input
<
Tensor
>
(
"Label_
Pos"
);
auto
*
label
_pos
=
ctx
.
Input
<
Tensor
>
(
"Label
Pos"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
rank
=
x
->
dims
().
size
();
int
rank
=
x
->
dims
().
size
();
Tensor
x_2d
=
framework
::
ReshapeToMatrix
(
*
x
,
rank
-
1
);
Tensor
x_2d
=
framework
::
ReshapeToMatrix
(
*
x
,
rank
-
1
);
Tensor
labels_Pos_2d
=
framework
::
ReshapeToMatrix
(
*
label
s_P
os
,
rank
-
1
);
Tensor
labels_Pos_2d
=
framework
::
ReshapeToMatrix
(
*
label
_p
os
,
rank
-
1
);
Tensor
y_2d
=
framework
::
ReshapeToMatrix
(
*
y
,
rank
-
1
);
Tensor
y_2d
=
framework
::
ReshapeToMatrix
(
*
y
,
rank
-
1
);
const
framework
::
Tensor
*
prob
=
&
x_2d
;
const
framework
::
Tensor
*
logits
=
&
x_2d
;
const
framework
::
Tensor
*
labels_pos
=
&
labels_Pos_2d
;
const
framework
::
Tensor
*
labels_pos
=
&
labels_Pos_2d
;
framework
::
Tensor
*
out
=
&
y_2d
;
framework
::
Tensor
*
out
=
&
y_2d
;
const
int
step_size
=
prob
->
dims
()[
0
];
const
int
step_size
=
logits
->
dims
()[
0
];
const
int
class_num
=
prob
->
dims
()[
1
];
const
int
class_num
=
logits
->
dims
()[
1
];
const
T
*
prob_data
=
prob
->
data
<
T
>
();
const
T
*
logits_data
=
logits
->
data
<
T
>
();
T
*
loss_data
=
out
->
data
<
T
>
();
T
*
loss_data
=
out
->
data
<
T
>
();
const
int64_t
*
label_pos_data
=
labels_pos
->
data
<
int64_t
>
();
const
int64_t
*
label_pos_data
=
labels_pos
->
data
<
int64_t
>
();
...
@@ -68,73 +68,47 @@ class BprLossOpKernel : public framework::OpKernel<T> {
...
@@ -68,73 +68,47 @@ class BprLossOpKernel : public framework::OpKernel<T> {
if
(
j
==
lbl_pos
)
continue
;
if
(
j
==
lbl_pos
)
continue
;
int
index_neg
=
i
*
class_num
+
j
;
int
index_neg
=
i
*
class_num
+
j
;
sum
+=
TolerableValue
<
T
>
()(
-
std
::
log
(
sum
+=
TolerableValue
<
T
>
()(
-
std
::
log
(
1.0
f
+
TolerableValue
<
T
>
()(
1.0
f
+
TolerableValue
<
T
>
()(
std
::
exp
(
logits_data
[
index_neg
]
-
std
::
exp
(
prob_data
[
index_neg
]
-
prob
_data
[
index_pos
]))));
logits
_data
[
index_pos
]))));
}
}
loss_data
[
i
]
=
-
sum
/
(
class_num
-
1
);
loss_data
[
i
]
=
-
sum
/
(
class_num
-
1
);
}
}
}
}
};
};
template
<
typename
T
>
class
XeGradFunctor
{
public:
XeGradFunctor
(
T
*
dx
,
const
T
*
dy
,
// NOLINT
const
T
*
x
,
// NOLINT
const
int64_t
*
label_pos
,
// NOLINT
size_t
num_classes
)
:
dx_
(
dx
),
dy_
(
dy
),
x_
(
x
),
label_pos_
(
label_pos
),
num_classes_
(
num_classes
)
{}
HOSTDEVICE
void
operator
()(
size_t
sample_id
)
{
for
(
size_t
x_offset
=
sample_id
*
num_classes_
;
x_offset
<
(
sample_id
+
1
)
*
num_classes_
;
++
x_offset
)
{
dx_
[
x_offset
]
=
static_cast
<
T
>
(
0
);
}
auto
p_index
=
sample_id
*
num_classes_
+
label_pos_
[
sample_id
];
for
(
size_t
ni
=
0
;
ni
<
num_classes_
;
ni
++
)
{
if
(
label_pos_
[
sample_id
]
==
ni
)
continue
;
auto
n_index
=
sample_id
*
num_classes_
+
ni
;
auto
grad_
=
-
dy_
[
sample_id
]
/
((
num_classes_
-
1
)
*
(
1.0
f
+
TolerableValue
<
T
>
()(
std
::
exp
(
x_
[
p_index
]
-
x_
[
n_index
]))));
dx_
[
p_index
]
+=
grad_
;
dx_
[
n_index
]
-=
grad_
;
}
}
private:
T
*
dx_
;
const
T
*
dy_
;
const
T
*
x_
;
const
int64_t
*
label_pos_
;
size_t
num_classes_
;
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
BprLossGradientOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
BprLossGradientOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
label_pos
=
ctx
.
Input
<
Tensor
>
(
"Label
_
Pos"
);
auto
*
label_pos
=
ctx
.
Input
<
Tensor
>
(
"LabelPos"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
rank
=
x
->
dims
().
size
();
const
int
step_size
=
x
->
dims
()[
0
];
int64_t
class_num
=
x
->
dims
()[
rank
-
1
];
const
int
num_classes_
=
x
->
dims
()[
1
];
XeGradFunctor
<
T
>
functor
(
dx_data
,
dy
->
data
<
T
>
(),
x
->
data
<
T
>
(),
T
*
dx_
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
label_pos
->
data
<
int64_t
>
(),
const
T
*
dy_
=
dy
->
data
<
T
>
();
static_cast
<
size_t
>
(
class_num
));
const
T
*
x_
=
x
->
data
<
T
>
();
platform
::
ForRange
<
DeviceContext
>
for_range
(
const
int64_t
*
label_pos_
=
label_pos
->
data
<
int64_t
>
();
ctx
.
template
device_context
<
DeviceContext
>(),
static_cast
<
size_t
>
(
dy
->
numel
()));
for
(
size_t
sample_id
=
0
;
sample_id
<
step_size
;
sample_id
++
)
{
for_range
(
functor
);
for
(
size_t
x_offset
=
sample_id
*
num_classes_
;
x_offset
<
(
sample_id
+
1
)
*
num_classes_
;
x_offset
++
)
{
dx_
[
x_offset
]
=
static_cast
<
T
>
(
0
);
}
auto
p_index
=
sample_id
*
num_classes_
+
label_pos_
[
sample_id
];
for
(
size_t
ni
=
0
;
ni
<
num_classes_
;
ni
++
)
{
if
(
label_pos_
[
sample_id
]
==
ni
)
continue
;
auto
n_index
=
sample_id
*
num_classes_
+
ni
;
auto
grad_
=
-
dy_
[
sample_id
]
/
((
num_classes_
-
1
)
*
(
1.0
f
+
TolerableValue
<
T
>
()(
std
::
exp
(
x_
[
p_index
]
-
x_
[
n_index
]))));
dx_
[
p_index
]
+=
grad_
;
dx_
[
n_index
]
-=
grad_
;
}
}
}
}
};
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
97de98cd
...
@@ -1356,7 +1356,7 @@ def bpr_loss(input, label_pos):
...
@@ -1356,7 +1356,7 @@ def bpr_loss(input, label_pos):
helper
.
append_op
(
helper
.
append_op
(
type
=
'bpr_loss'
,
type
=
'bpr_loss'
,
inputs
=
{
'X'
:
[
input
],
inputs
=
{
'X'
:
[
input
],
'Label
_
Pos'
:
[
label_pos
]},
'LabelPos'
:
[
label_pos
]},
outputs
=
{
'Y'
:
[
out
]})
outputs
=
{
'Y'
:
[
out
]})
return
out
return
out
...
...
python/paddle/fluid/tests/unittests/test_bpr_loss_op.py
浏览文件 @
97de98cd
...
@@ -39,7 +39,7 @@ class TestBprLossOp1(OpTest):
...
@@ -39,7 +39,7 @@ class TestBprLossOp1(OpTest):
sum
+=
(
-
np
.
log
(
1.0
+
np
.
exp
(
X
[
i
][
j
]
-
X
[
i
][
label_pos
[
i
][
0
]])))
sum
+=
(
-
np
.
log
(
1.0
+
np
.
exp
(
X
[
i
][
j
]
-
X
[
i
][
label_pos
[
i
][
0
]])))
bpr_loss_result
.
append
(
-
sum
/
(
class_num
-
1
))
bpr_loss_result
.
append
(
-
sum
/
(
class_num
-
1
))
bpr_loss
=
np
.
asmatrix
([[
x
]
for
x
in
bpr_loss_result
],
dtype
=
"float64"
)
bpr_loss
=
np
.
asmatrix
([[
x
]
for
x
in
bpr_loss_result
],
dtype
=
"float64"
)
self
.
inputs
=
{
"X"
:
X
,
"Label
_
Pos"
:
label_pos
}
self
.
inputs
=
{
"X"
:
X
,
"LabelPos"
:
label_pos
}
self
.
outputs
=
{
"Y"
:
bpr_loss
}
self
.
outputs
=
{
"Y"
:
bpr_loss
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录