Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
96a2e44a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
96a2e44a
编写于
3月 06, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize seq2seq-dataset
上级
37806792
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
229 addition
and
258 deletion
+229
-258
demo/sentiment/preprocess.py
demo/sentiment/preprocess.py
+160
-6
python/paddle/v2/dataset/wmt14.py
python/paddle/v2/dataset/wmt14.py
+69
-80
python/paddle/v2/dataset/wmt14_util.py
python/paddle/v2/dataset/wmt14_util.py
+0
-172
未找到文件。
demo/sentiment/preprocess.py
浏览文件 @
96a2e44a
...
...
@@ -12,22 +12,176 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
random
import
operator
import
numpy
as
np
from
subprocess
import
Popen
,
PIPE
from
os.path
import
join
as
join_path
from
optparse
import
OptionParser
from
os.path
import
join
as
join_path
from
subprocess
import
Popen
,
PIPE
import
numpy
as
np
from
paddle.utils.preprocess_util
import
*
from
paddle.utils.preprocess_util
import
save_list
,
DatasetCreater
"""
Usage: run following command to show help message.
python preprocess.py -h
"""
class
SeqToSeqDatasetCreater
(
DatasetCreater
):
"""
A class to process data for sequence to sequence application.
"""
def
__init__
(
self
,
data_path
,
output_path
):
"""
data_path: the path to store the train data, test data and gen data
output_path: the path to store the processed dataset
"""
DatasetCreater
.
__init__
(
self
,
data_path
)
self
.
gen_dir_name
=
'gen'
self
.
gen_list_name
=
'gen.list'
self
.
output_path
=
output_path
def
concat_file
(
self
,
file_path
,
file1
,
file2
,
output_path
,
output
):
"""
Concat file1 and file2 to be one output file
The i-th line of output = i-th line of file1 + '
\t
' + i-th line of file2
file_path: the path to store file1 and file2
output_path: the path to store output file
"""
file1
=
os
.
path
.
join
(
file_path
,
file1
)
file2
=
os
.
path
.
join
(
file_path
,
file2
)
output
=
os
.
path
.
join
(
output_path
,
output
)
if
not
os
.
path
.
exists
(
output
):
os
.
system
(
'paste '
+
file1
+
' '
+
file2
+
' > '
+
output
)
def
cat_file
(
self
,
dir_path
,
suffix
,
output_path
,
output
):
"""
Cat all the files in dir_path with suffix to be one output file
dir_path: the base directory to store input file
suffix: suffix of file name
output_path: the path to store output file
"""
cmd
=
'cat '
file_list
=
os
.
listdir
(
dir_path
)
file_list
.
sort
()
for
file
in
file_list
:
if
file
.
endswith
(
suffix
):
cmd
+=
os
.
path
.
join
(
dir_path
,
file
)
+
' '
output
=
os
.
path
.
join
(
output_path
,
output
)
if
not
os
.
path
.
exists
(
output
):
os
.
system
(
cmd
+
'> '
+
output
)
def
build_dict
(
self
,
file_path
,
dict_path
,
dict_size
=-
1
):
"""
Create the dictionary for the file, Note that
1. Valid characters include all printable characters
2. There is distinction between uppercase and lowercase letters
3. There is 3 special token:
<s>: the start of a sequence
<e>: the end of a sequence
<unk>: a word not included in dictionary
file_path: the path to store file
dict_path: the path to store dictionary
dict_size: word count of dictionary
if is -1, dictionary will contains all the words in file
"""
if
not
os
.
path
.
exists
(
dict_path
):
dictory
=
dict
()
with
open
(
file_path
,
"r"
)
as
fdata
:
for
line
in
fdata
:
line
=
line
.
split
(
'
\t
'
)
for
line_split
in
line
:
words
=
line_split
.
strip
().
split
()
for
word
in
words
:
if
word
not
in
dictory
:
dictory
[
word
]
=
1
else
:
dictory
[
word
]
+=
1
output
=
open
(
dict_path
,
"w+"
)
output
.
write
(
'<s>
\n
<e>
\n
<unk>
\n
'
)
count
=
3
for
key
,
value
in
sorted
(
dictory
.
items
(),
key
=
lambda
d
:
d
[
1
],
reverse
=
True
):
output
.
write
(
key
+
"
\n
"
)
count
+=
1
if
count
==
dict_size
:
break
self
.
dict_size
=
count
def
create_dataset
(
self
,
dict_size
=-
1
,
mergeDict
=
False
,
suffixes
=
[
'.src'
,
'.trg'
]):
"""
Create seqToseq dataset
"""
# dataset_list and dir_list has one-to-one relationship
train_dataset
=
os
.
path
.
join
(
self
.
data_path
,
self
.
train_dir_name
)
test_dataset
=
os
.
path
.
join
(
self
.
data_path
,
self
.
test_dir_name
)
gen_dataset
=
os
.
path
.
join
(
self
.
data_path
,
self
.
gen_dir_name
)
dataset_list
=
[
train_dataset
,
test_dataset
,
gen_dataset
]
train_dir
=
os
.
path
.
join
(
self
.
output_path
,
self
.
train_dir_name
)
test_dir
=
os
.
path
.
join
(
self
.
output_path
,
self
.
test_dir_name
)
gen_dir
=
os
.
path
.
join
(
self
.
output_path
,
self
.
gen_dir_name
)
dir_list
=
[
train_dir
,
test_dir
,
gen_dir
]
# create directory
for
dir
in
dir_list
:
if
not
os
.
path
.
exists
(
dir
):
os
.
makedirs
(
dir
)
# checkout dataset should be parallel corpora
suffix_len
=
len
(
suffixes
[
0
])
for
dataset
in
dataset_list
:
file_list
=
os
.
listdir
(
dataset
)
if
len
(
file_list
)
%
2
==
1
:
raise
RuntimeError
(
"dataset should be parallel corpora"
)
file_list
.
sort
()
for
i
in
range
(
0
,
len
(
file_list
),
2
):
if
file_list
[
i
][:
-
suffix_len
]
!=
file_list
[
i
+
1
][:
-
suffix_len
]:
raise
RuntimeError
(
"source and target file name should be equal"
)
# cat all the files with the same suffix in dataset
for
suffix
in
suffixes
:
for
dataset
in
dataset_list
:
outname
=
os
.
path
.
basename
(
dataset
)
+
suffix
self
.
cat_file
(
dataset
,
suffix
,
dataset
,
outname
)
# concat parallel corpora and create file.list
print
'concat parallel corpora for dataset'
id
=
0
list
=
[
'train.list'
,
'test.list'
,
'gen.list'
]
for
dataset
in
dataset_list
:
outname
=
os
.
path
.
basename
(
dataset
)
self
.
concat_file
(
dataset
,
outname
+
suffixes
[
0
],
outname
+
suffixes
[
1
],
dir_list
[
id
],
outname
)
save_list
([
os
.
path
.
join
(
dir_list
[
id
],
outname
)],
os
.
path
.
join
(
self
.
output_path
,
list
[
id
]))
id
+=
1
# build dictionary for train data
dict
=
[
'src.dict'
,
'trg.dict'
]
dict_path
=
[
os
.
path
.
join
(
self
.
output_path
,
dict
[
0
]),
os
.
path
.
join
(
self
.
output_path
,
dict
[
1
])
]
if
mergeDict
:
outname
=
os
.
path
.
join
(
train_dir
,
train_dataset
.
split
(
'/'
)[
-
1
])
print
'build src dictionary for train data'
self
.
build_dict
(
outname
,
dict_path
[
0
],
dict_size
)
print
'build trg dictionary for train data'
os
.
system
(
'cp '
+
dict_path
[
0
]
+
' '
+
dict_path
[
1
])
else
:
outname
=
os
.
path
.
join
(
train_dataset
,
self
.
train_dir_name
)
for
id
in
range
(
0
,
2
):
suffix
=
suffixes
[
id
]
print
'build '
+
suffix
[
1
:]
+
' dictionary for train data'
self
.
build_dict
(
outname
+
suffix
,
dict_path
[
id
],
dict_size
)
print
'dictionary size is'
,
self
.
dict_size
def
save_dict
(
dict
,
filename
,
is_reverse
=
True
):
"""
Save dictionary into file.
...
...
python/paddle/v2/dataset/wmt14.py
浏览文件 @
96a2e44a
...
...
@@ -14,103 +14,92 @@
"""
wmt14 dataset
"""
import
os
import
os.path
import
tarfile
import
paddle.v2.dataset.common
from
wmt14_util
import
SeqToSeqDatasetCreater
__all__
=
[
'train'
,
'test'
,
'build_dict'
]
URL_DEV_TEST
=
'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz'
MD5_DEV_TEST
=
'7d7897317ddd8ba0ae5c5fa7248d3ff5'
# this is a small set of data for test. The original data is too large and will be add later.
URL_TRAIN
=
'http://
paddlepaddle.bj.bcebos.com/demo/wmt_shrinked_data
/wmt14.tgz'
MD5_TRAIN
=
'
7373473f86016f1f48037c9c340a2d5b
'
URL_TRAIN
=
'http://
localhost:8989
/wmt14.tgz'
MD5_TRAIN
=
'
a755315dd01c2c35bde29a744ede23a6
'
START
=
"<s>"
END
=
"<e>"
UNK
=
"<unk>"
UNK_IDX
=
2
DEFAULT_DATA_DIR
=
"./data"
ORIGIN_DATA_DIR
=
"wmt14"
INNER_DATA_DIR
=
"pre-wmt14"
SRC_DICT
=
INNER_DATA_DIR
+
"/src.dict"
TRG_DICT
=
INNER_DATA_DIR
+
"/trg.dict"
TRAIN_FILE
=
INNER_DATA_DIR
+
"/train/train"
def
__process_data__
(
data_path
,
dict_size
=
None
):
downloaded_data
=
os
.
path
.
join
(
data_path
,
ORIGIN_DATA_DIR
)
if
not
os
.
path
.
exists
(
downloaded_data
):
# 1. download and extract tgz.
with
tarfile
.
open
(
paddle
.
v2
.
dataset
.
common
.
download
(
URL_TRAIN
,
'wmt14'
,
MD5_TRAIN
))
as
tf
:
tf
.
extractall
(
data_path
)
# 2. process data file to intermediate format.
processed_data
=
os
.
path
.
join
(
data_path
,
INNER_DATA_DIR
)
if
not
os
.
path
.
exists
(
processed_data
):
dict_size
=
dict_size
or
-
1
data_creator
=
SeqToSeqDatasetCreater
(
downloaded_data
,
processed_data
)
data_creator
.
create_dataset
(
dict_size
,
mergeDict
=
False
)
def
__read_to_dict__
(
dict_path
,
count
):
with
open
(
dict_path
,
"r"
)
as
fin
:
def
__read_to_dict__
(
tar_file
,
dict_size
):
def
__to_dict__
(
fd
,
size
):
out_dict
=
dict
()
for
line_count
,
line
in
enumerate
(
f
in
):
if
line_count
<
=
count
:
for
line_count
,
line
in
enumerate
(
f
d
):
if
line_count
<
size
:
out_dict
[
line
.
strip
()]
=
line_count
else
:
break
return
out_dict
def
__reader__
(
file_name
,
src_dict
,
trg_dict
):
with
open
(
file_name
,
'r'
)
as
f
:
for
line_count
,
line
in
enumerate
(
f
):
line_split
=
line
.
strip
().
split
(
'
\t
'
)
if
len
(
line_split
)
!=
2
:
continue
src_seq
=
line_split
[
0
]
# one source sequence
src_words
=
src_seq
.
split
()
src_ids
=
[
src_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
[
START
]
+
src_words
+
[
END
]
return
out_dict
with
tarfile
.
open
(
tar_file
,
mode
=
'r'
)
as
f
:
names
=
[
each_item
.
name
for
each_item
in
f
if
each_item
.
name
.
endswith
(
"src.dict"
)
]
assert
len
(
names
)
==
1
src_dict
=
__to_dict__
(
f
.
extractfile
(
names
[
0
]),
dict_size
)
names
=
[
each_item
.
name
for
each_item
in
f
if
each_item
.
name
.
endswith
(
"trg.dict"
)
]
assert
len
(
names
)
==
1
trg_dict
=
__to_dict__
(
f
.
extractfile
(
names
[
0
]),
dict_size
)
return
src_dict
,
trg_dict
def
reader_creator
(
tar_file
,
file_name
,
dict_size
):
def
reader
():
src_dict
,
trg_dict
=
__read_to_dict__
(
tar_file
,
dict_size
)
with
tarfile
.
open
(
tar_file
,
mode
=
'r'
)
as
f
:
names
=
[
each_item
.
name
for
each_item
in
f
if
each_item
.
name
.
endswith
(
file_name
)
]
trg_seq
=
line_split
[
1
]
# one target sequence
trg_words
=
trg_seq
.
split
()
trg_ids
=
[
trg_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
trg_words
]
# remove sequence whose length > 80 in training mode
if
len
(
src_ids
)
>
80
or
len
(
trg_ids
)
>
80
:
continue
trg_ids_next
=
trg_ids
+
[
trg_dict
[
END
]]
trg_ids
=
[
trg_dict
[
START
]]
+
trg_ids
yield
src_ids
,
trg_ids
,
trg_ids_next
def
train
(
data_dir
=
None
,
dict_size
=
None
):
data_dir
=
data_dir
or
DEFAULT_DATA_DIR
__process_data__
(
data_dir
,
dict_size
)
src_lang_dict
=
os
.
path
.
join
(
data_dir
,
SRC_DICT
)
trg_lang_dict
=
os
.
path
.
join
(
data_dir
,
TRG_DICT
)
train_file_name
=
os
.
path
.
join
(
data_dir
,
TRAIN_FILE
)
default_dict_size
=
len
(
open
(
src_lang_dict
,
"r"
).
readlines
())
if
dict_size
>
default_dict_size
:
raise
ValueError
(
"dict_dim should not be larger then the "
"length of word dict"
)
real_dict_dim
=
dict_size
or
default_dict_size
src_dict
=
__read_to_dict__
(
src_lang_dict
,
real_dict_dim
)
trg_dict
=
__read_to_dict__
(
trg_lang_dict
,
real_dict_dim
)
return
lambda
:
__reader__
(
train_file_name
,
src_dict
,
trg_dict
)
for
name
in
names
:
for
line
in
f
.
extractfile
(
name
):
line_split
=
line
.
strip
().
split
(
'
\t
'
)
if
len
(
line_split
)
!=
2
:
continue
src_seq
=
line_split
[
0
]
# one source sequence
src_words
=
src_seq
.
split
()
src_ids
=
[
src_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
[
START
]
+
src_words
+
[
END
]
]
trg_seq
=
line_split
[
1
]
# one target sequence
trg_words
=
trg_seq
.
split
()
trg_ids
=
[
trg_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
trg_words
]
# remove sequence whose length > 80 in training mode
if
len
(
src_ids
)
>
80
or
len
(
trg_ids
)
>
80
:
continue
trg_ids_next
=
trg_ids
+
[
trg_dict
[
END
]]
trg_ids
=
[
trg_dict
[
START
]]
+
trg_ids
yield
src_ids
,
trg_ids
,
trg_ids_next
return
reader
def
train
(
dict_size
):
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
URL_TRAIN
,
'wmt14'
,
MD5_TRAIN
),
'train/train'
,
dict_size
)
def
test
(
dict_size
):
return
reader_creator
(
paddle
.
v2
.
dataset
.
common
.
download
(
URL_TRAIN
,
'wmt14'
,
MD5_TRAIN
),
'test/test'
,
dict_size
)
python/paddle/v2/dataset/wmt14_util.py
已删除
100644 → 0
浏览文件 @
37806792
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
from
paddle.utils.preprocess_util
import
save_list
,
DatasetCreater
class
SeqToSeqDatasetCreater
(
DatasetCreater
):
"""
A class to process data for sequence to sequence application.
"""
def
__init__
(
self
,
data_path
,
output_path
):
"""
data_path: the path to store the train data, test data and gen data
output_path: the path to store the processed dataset
"""
DatasetCreater
.
__init__
(
self
,
data_path
)
self
.
gen_dir_name
=
'gen'
self
.
gen_list_name
=
'gen.list'
self
.
output_path
=
output_path
def
concat_file
(
self
,
file_path
,
file1
,
file2
,
output_path
,
output
):
"""
Concat file1 and file2 to be one output file
The i-th line of output = i-th line of file1 + '
\t
' + i-th line of file2
file_path: the path to store file1 and file2
output_path: the path to store output file
"""
file1
=
os
.
path
.
join
(
file_path
,
file1
)
file2
=
os
.
path
.
join
(
file_path
,
file2
)
output
=
os
.
path
.
join
(
output_path
,
output
)
if
not
os
.
path
.
exists
(
output
):
os
.
system
(
'paste '
+
file1
+
' '
+
file2
+
' > '
+
output
)
def
cat_file
(
self
,
dir_path
,
suffix
,
output_path
,
output
):
"""
Cat all the files in dir_path with suffix to be one output file
dir_path: the base directory to store input file
suffix: suffix of file name
output_path: the path to store output file
"""
cmd
=
'cat '
file_list
=
os
.
listdir
(
dir_path
)
file_list
.
sort
()
for
file
in
file_list
:
if
file
.
endswith
(
suffix
):
cmd
+=
os
.
path
.
join
(
dir_path
,
file
)
+
' '
output
=
os
.
path
.
join
(
output_path
,
output
)
if
not
os
.
path
.
exists
(
output
):
os
.
system
(
cmd
+
'> '
+
output
)
def
build_dict
(
self
,
file_path
,
dict_path
,
dict_size
=-
1
):
"""
Create the dictionary for the file, Note that
1. Valid characters include all printable characters
2. There is distinction between uppercase and lowercase letters
3. There is 3 special token:
<s>: the start of a sequence
<e>: the end of a sequence
<unk>: a word not included in dictionary
file_path: the path to store file
dict_path: the path to store dictionary
dict_size: word count of dictionary
if is -1, dictionary will contains all the words in file
"""
if
not
os
.
path
.
exists
(
dict_path
):
dictory
=
dict
()
with
open
(
file_path
,
"r"
)
as
fdata
:
for
line
in
fdata
:
line
=
line
.
split
(
'
\t
'
)
for
line_split
in
line
:
words
=
line_split
.
strip
().
split
()
for
word
in
words
:
if
word
not
in
dictory
:
dictory
[
word
]
=
1
else
:
dictory
[
word
]
+=
1
output
=
open
(
dict_path
,
"w+"
)
output
.
write
(
'<s>
\n
<e>
\n
<unk>
\n
'
)
count
=
3
for
key
,
value
in
sorted
(
dictory
.
items
(),
key
=
lambda
d
:
d
[
1
],
reverse
=
True
):
output
.
write
(
key
+
"
\n
"
)
count
+=
1
if
count
==
dict_size
:
break
self
.
dict_size
=
count
def
create_dataset
(
self
,
dict_size
=-
1
,
mergeDict
=
False
,
suffixes
=
[
'.src'
,
'.trg'
]):
"""
Create seqToseq dataset
"""
# dataset_list and dir_list has one-to-one relationship
train_dataset
=
os
.
path
.
join
(
self
.
data_path
,
self
.
train_dir_name
)
test_dataset
=
os
.
path
.
join
(
self
.
data_path
,
self
.
test_dir_name
)
gen_dataset
=
os
.
path
.
join
(
self
.
data_path
,
self
.
gen_dir_name
)
dataset_list
=
[
train_dataset
,
test_dataset
,
gen_dataset
]
train_dir
=
os
.
path
.
join
(
self
.
output_path
,
self
.
train_dir_name
)
test_dir
=
os
.
path
.
join
(
self
.
output_path
,
self
.
test_dir_name
)
gen_dir
=
os
.
path
.
join
(
self
.
output_path
,
self
.
gen_dir_name
)
dir_list
=
[
train_dir
,
test_dir
,
gen_dir
]
# create directory
for
dir
in
dir_list
:
if
not
os
.
path
.
exists
(
dir
):
os
.
makedirs
(
dir
)
# checkout dataset should be parallel corpora
suffix_len
=
len
(
suffixes
[
0
])
for
dataset
in
dataset_list
:
file_list
=
os
.
listdir
(
dataset
)
if
len
(
file_list
)
%
2
==
1
:
raise
RuntimeError
(
"dataset should be parallel corpora"
)
file_list
.
sort
()
for
i
in
range
(
0
,
len
(
file_list
),
2
):
if
file_list
[
i
][:
-
suffix_len
]
!=
file_list
[
i
+
1
][:
-
suffix_len
]:
raise
RuntimeError
(
"source and target file name should be equal"
)
# cat all the files with the same suffix in dataset
for
suffix
in
suffixes
:
for
dataset
in
dataset_list
:
outname
=
os
.
path
.
basename
(
dataset
)
+
suffix
self
.
cat_file
(
dataset
,
suffix
,
dataset
,
outname
)
# concat parallel corpora and create file.list
print
'concat parallel corpora for dataset'
id
=
0
list
=
[
'train.list'
,
'test.list'
,
'gen.list'
]
for
dataset
in
dataset_list
:
outname
=
os
.
path
.
basename
(
dataset
)
self
.
concat_file
(
dataset
,
outname
+
suffixes
[
0
],
outname
+
suffixes
[
1
],
dir_list
[
id
],
outname
)
save_list
([
os
.
path
.
join
(
dir_list
[
id
],
outname
)],
os
.
path
.
join
(
self
.
output_path
,
list
[
id
]))
id
+=
1
# build dictionary for train data
dict
=
[
'src.dict'
,
'trg.dict'
]
dict_path
=
[
os
.
path
.
join
(
self
.
output_path
,
dict
[
0
]),
os
.
path
.
join
(
self
.
output_path
,
dict
[
1
])
]
if
mergeDict
:
outname
=
os
.
path
.
join
(
train_dir
,
train_dataset
.
split
(
'/'
)[
-
1
])
print
'build src dictionary for train data'
self
.
build_dict
(
outname
,
dict_path
[
0
],
dict_size
)
print
'build trg dictionary for train data'
os
.
system
(
'cp '
+
dict_path
[
0
]
+
' '
+
dict_path
[
1
])
else
:
outname
=
os
.
path
.
join
(
train_dataset
,
self
.
train_dir_name
)
for
id
in
range
(
0
,
2
):
suffix
=
suffixes
[
id
]
print
'build '
+
suffix
[
1
:]
+
' dictionary for train data'
self
.
build_dict
(
outname
+
suffix
,
dict_path
[
id
],
dict_size
)
print
'dictionary size is'
,
self
.
dict_size
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录