Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
95cdbfec
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
95cdbfec
编写于
11月 27, 2017
作者:
W
Wang Meng
提交者:
GitHub
11月 27, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4859 from will-am/factorization_machine_layer
Add Factorization Machine Layer
上级
ef3420e2
8a283dbc
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
445 addition
and
5 deletion
+445
-5
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+11
-4
paddle/gserver/layers/FactorizationMachineLayer.cpp
paddle/gserver/layers/FactorizationMachineLayer.cpp
+158
-0
paddle/gserver/layers/FactorizationMachineLayer.h
paddle/gserver/layers/FactorizationMachineLayer.h
+80
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+19
-0
paddle/math/CpuSparseMatrix.cpp
paddle/math/CpuSparseMatrix.cpp
+29
-0
paddle/math/CpuSparseMatrix.h
paddle/math/CpuSparseMatrix.h
+9
-0
proto/ModelConfig.proto
proto/ModelConfig.proto
+3
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+15
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+73
-0
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
.../paddle/trainer_config_helpers/tests/configs/file_list.sh
+2
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/test_factorization_machine.protostr
...ests/configs/protostr/test_factorization_machine.protostr
+39
-0
python/paddle/trainer_config_helpers/tests/configs/test_factorization_machine.py
...onfig_helpers/tests/configs/test_factorization_machine.py
+7
-0
未找到文件。
doc/api/v2/config/layer.rst
浏览文件 @
95cdbfec
...
...
@@ -54,7 +54,7 @@ img_conv
.. _api_v2.layer_context_projection:
context_projection
context_projection
------------------
.. autoclass:: paddle.v2.layer.context_projection
:noindex:
...
...
@@ -70,7 +70,7 @@ Image Pooling Layer
img_pool
--------
.. autoclass:: paddle.v2.layer.img_pool
:noindex:
:noindex:
spp
---
...
...
@@ -104,7 +104,7 @@ sum_to_one_norm
---------------
.. autoclass:: paddle.v2.layer.sum_to_one_norm
:noindex:
cross_channel_norm
------------------
.. autoclass:: paddle.v2.layer.cross_channel_norm
...
...
@@ -114,7 +114,7 @@ row_l2_norm
-----------
.. autoclass:: paddle.v2.layer.row_l2_norm
:noindex:
Recurrent Layers
================
...
...
@@ -415,6 +415,13 @@ multiplex
.. autoclass:: paddle.v2.layer.multiplex
:noindex:
Factorization Machine Layer
============================
factorization_machine
---------------------
.. autoclass:: paddle.v2.layer.factorization_machine
:noindex:
Slicing and Joining Layers
==========================
...
...
paddle/gserver/layers/FactorizationMachineLayer.cpp
0 → 100644
浏览文件 @
95cdbfec
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "FactorizationMachineLayer.h"
#include <algorithm>
#include <vector>
#include "paddle/math/SparseMatrix.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
REGISTER_LAYER
(
factorization_machine
,
FactorizationMachineLayer
);
bool
FactorizationMachineLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
factorSize_
=
config_
.
factor_size
();
/* initialize the latentVectors_ */
CHECK_EQ
(
inputLayers_
.
size
(),
1UL
);
size_t
inputSize
=
inputLayers_
[
0
]
->
getSize
();
CHECK_EQ
(
parameters_
[
0
]
->
getSize
(),
inputSize
*
factorSize_
);
latentVectors_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
inputSize
,
factorSize_
,
parameters_
[
0
]));
return
true
;
}
void
FactorizationMachineLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
const
MatrixPtr
&
inputV
=
getInputValue
(
0
);
size_t
batchSize
=
inputV
->
getHeight
();
size_t
outputSize
=
getSize
();
size_t
inputSize
=
inputLayers_
[
0
]
->
getSize
();
reserveOutput
(
batchSize
,
outputSize
);
MatrixPtr
outV
=
getOutputValue
();
Matrix
::
resizeOrCreate
(
latentVectorsSquare_
,
inputSize
,
factorSize_
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
inputMulFactor_
,
batchSize
,
factorSize_
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
tmpOut_
,
batchSize
,
factorSize_
,
false
,
useGpu_
);
REGISTER_TIMER_INFO
(
"FmInputMulFactorTimer"
,
getName
().
c_str
());
inputMulFactor_
->
mul
(
*
inputV
,
*
latentVectors_
->
getW
());
inputMulFactor_
->
square2
(
*
tmpOut_
);
outV
->
sumRows
(
*
tmpOut_
,
0.5
,
0
);
if
(
dynamic_cast
<
CpuSparseMatrix
*>
(
inputV
.
get
()))
{
Matrix
::
resizeOrCreateSparseMatrix
(
inputSquare_
,
inputV
->
getHeight
(),
inputV
->
getWidth
(),
inputV
->
getElementCnt
(),
inputV
->
getValueType
());
inputSquare_
->
copyFrom
(
*
inputV
);
(
dynamic_cast
<
CpuSparseMatrix
*>
(
inputSquare_
.
get
()))
->
square2
();
}
else
{
Matrix
::
resizeOrCreate
(
inputSquare_
,
inputV
->
getHeight
(),
inputV
->
getWidth
(),
false
,
useGpu_
);
inputV
->
square2
(
*
inputSquare_
);
}
latentVectors_
->
getW
()
->
square2
(
*
latentVectorsSquare_
);
tmpOut_
->
mul
(
*
inputSquare_
,
*
latentVectorsSquare_
);
outV
->
sumRows
(
*
tmpOut_
,
-
0.5
,
1.0
);
/* activation */
{
REGISTER_TIMER_INFO
(
"FmFwAtvTimer"
,
getName
().
c_str
());
forwardActivation
();
}
}
void
FactorizationMachineLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
/* Do derivation */
{
backwardActivation
();
}
const
MatrixPtr
&
inputV
=
getInputValue
(
0
);
const
MatrixPtr
&
oGrad
=
getOutputGrad
();
Matrix
::
resizeOrCreate
(
tmpSum_
,
1
,
latentVectors_
->
getW
()
->
getHeight
(),
false
,
useGpu_
);
MatrixPtr
tmpSumTrans
=
Matrix
::
create
(
tmpSum_
->
getRowBuf
(
0
),
latentVectors_
->
getW
()
->
getHeight
(),
1
,
false
,
useGpu_
);
/* Calculate the gradients of the latentVectors_ matrix */
if
(
latentVectors_
->
getWGrad
())
{
if
(
dynamic_cast
<
CpuSparseMatrix
*>
(
inputV
.
get
()))
{
Matrix
::
resizeOrCreateSparseMatrix
(
tmpInput_
,
inputV
->
getHeight
(),
inputV
->
getWidth
(),
inputV
->
getElementCnt
());
CpuSparseMatrix
*
sparseInputV
=
dynamic_cast
<
CpuSparseMatrix
*>
(
inputV
.
get
());
CpuSparseMatrix
*
sparseInputSquare
=
dynamic_cast
<
CpuSparseMatrix
*>
(
inputSquare_
.
get
());
CpuSparseMatrix
*
sparseTmpInput
=
dynamic_cast
<
CpuSparseMatrix
*>
(
tmpInput_
.
get
());
sparseTmpInput
->
copyFrom
(
*
sparseInputV
);
sparseTmpInput
->
rowScale
(
0
,
*
sparseInputV
,
*
oGrad
);
latentVectors_
->
getWGrad
()
->
mul
(
*
sparseTmpInput
->
getTranspose
(),
*
inputMulFactor_
,
1
,
1
);
sparseTmpInput
->
rowScale
(
0
,
*
sparseInputSquare
,
*
oGrad
);
Matrix
::
resizeOrCreate
(
negOnes_
,
1
,
inputV
->
getHeight
(),
false
,
useGpu_
);
negOnes_
->
zeroMem
();
negOnes_
->
add
(
-
1
);
tmpSum_
->
mul
(
*
negOnes_
,
*
sparseTmpInput
,
1
,
0
);
}
else
{
Matrix
::
resizeOrCreate
(
tmpInput_
,
inputV
->
getHeight
(),
inputV
->
getWidth
(),
false
,
useGpu_
);
tmpInput_
->
rowScale
(
0
,
*
inputV
,
*
oGrad
);
latentVectors_
->
getWGrad
()
->
mul
(
*
tmpInput_
->
getTranspose
(),
*
inputMulFactor_
,
1
,
1
);
tmpInput_
->
rowScale
(
0
,
*
inputSquare_
,
*
oGrad
);
tmpSum_
->
sumCols
(
*
tmpInput_
,
-
1
,
0
);
}
latentVectors_
->
getWGrad
()
->
addRowScale
(
0
,
*
latentVectors_
->
getW
(),
*
tmpSumTrans
);
/* Increasing the number of gradient */
latentVectors_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
/* Calculate the input layers gradient */
MatrixPtr
inGrad
=
getInputGrad
(
0
);
if
(
inGrad
!=
NULL
)
{
inGrad
->
mul
(
*
inputMulFactor_
,
*
latentVectors_
->
getW
()
->
getTranspose
(),
1
,
1
);
tmpSumTrans
->
sumRows
(
*
latentVectorsSquare_
,
-
1
,
0
);
inGrad
->
addColScale
(
0
,
*
inputV
,
*
tmpSum_
);
inGrad
->
rowScale
(
0
,
*
inGrad
,
*
oGrad
);
}
}
}
// namespace paddle
paddle/gserver/layers/FactorizationMachineLayer.h
0 → 100644
浏览文件 @
95cdbfec
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/utils/ThreadLocal.h"
namespace
paddle
{
/**
* @brief The Factorization Machine models pairwise (order-2) feature
* interactions as inner product of the learned latent vectors corresponding
* to each input feature.
*
* The Factorization Machine can effectively capture feature interactions
* especially when the input is sparse. While in principle FM can model higher
* order feature interaction, in practice usually only order-2 feature
* interactions are considered. The Factorization Machine Layer here only
* computes the order-2 interations with the formula:
*
* \f[
* y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j
* \f]
*
* The detailed calculation for forward and backward can be found at this paper:
*
* Factorization machines.
*
* The config file api is factorization_machine.
*/
class
FactorizationMachineLayer
:
public
Layer
{
protected:
// The latent vectors, shape: (size, factorSize_)
// Each row of the latentVectors_ matrix is the latent vector
// corresponding to one input feature dimension
std
::
unique_ptr
<
Weight
>
latentVectors_
;
// The hyperparameter that defines the dimensionality of the factorization
size_t
factorSize_
;
private:
// Store the square values of the letent vectors matrix
MatrixPtr
latentVectorsSquare_
;
// Store the square values of input matrix
MatrixPtr
inputSquare_
;
// The result of input matrix * latent vector matrix that will be used in
// both forward and backward step
MatrixPtr
inputMulFactor_
;
// Store temporary calculation result
MatrixPtr
tmpOut_
;
MatrixPtr
tmpSum_
;
MatrixPtr
tmpInput_
;
// Negative identity matrix
MatrixPtr
negOnes_
;
public:
explicit
FactorizationMachineLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
~
FactorizationMachineLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
};
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
95cdbfec
...
...
@@ -2464,6 +2464,25 @@ TEST(Layer, L2DistanceLayer) {
}
}
void
testFactorizationMachineLayer
(
InputType
type
,
bool
useGpu
)
{
const
int
FACTOR_SIZE
=
10
;
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"factorization_machine"
);
config
.
layerConfig
.
set_factor_size
(
FACTOR_SIZE
);
config
.
layerConfig
.
set_size
(
1
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
type
,
"layer_0"
,
128
,
1280
});
config
.
layerConfig
.
add_inputs
();
testLayerGrad
(
config
,
"factorization_machine"
,
16
,
false
,
useGpu
,
false
);
}
TEST
(
Layer
,
FactorizationMachineLayer
)
{
for
(
auto
useGpu
:
{
false
,
true
})
{
testFactorizationMachineLayer
(
INPUT_DATA
,
useGpu
);
}
testFactorizationMachineLayer
(
INPUT_SPARSE_FLOAT_VALUE_DATA
,
false
);
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
...
...
paddle/math/CpuSparseMatrix.cpp
浏览文件 @
95cdbfec
...
...
@@ -260,6 +260,35 @@ void CpuSparseMatrix::printOneRow(std::ostream& os, size_t idx) const {
os
<<
";"
;
}
void
CpuSparseMatrix
::
rowScale
(
size_t
cCol
,
CpuSparseMatrix
&
b
,
Matrix
&
c
)
{
CHECK
(
getFormat
()
!=
SPARSE_CSC
)
<<
"Not supported"
;
CHECK_EQ
(
height_
,
b
.
getHeight
());
CHECK_EQ
(
width_
,
b
.
getWidth
());
real
*
A
=
getValue
();
real
*
B
=
b
.
getValue
();
if
(
b
.
getValueType
()
==
FLOAT_VALUE
)
{
for
(
size_t
i
=
0
;
i
<
height_
;
i
++
)
{
size_t
start
=
getRowStartIdx
(
i
);
size_t
end
=
getRowStartIdx
(
i
+
1
);
CHECK_EQ
(
start
,
b
.
getRowStartIdx
(
i
));
CHECK_EQ
(
end
,
b
.
getRowStartIdx
(
i
+
1
));
for
(
size_t
j
=
start
;
j
<
end
;
j
++
)
{
A
[
j
]
=
B
[
j
]
*
c
.
getElement
(
i
,
cCol
);
}
}
}
else
if
(
b
.
getValueType
()
==
NO_VALUE
)
{
for
(
size_t
i
=
0
;
i
<
height_
;
i
++
)
{
size_t
start
=
getRowStartIdx
(
i
);
size_t
end
=
getRowStartIdx
(
i
+
1
);
CHECK_EQ
(
start
,
b
.
getRowStartIdx
(
i
));
CHECK_EQ
(
end
,
b
.
getRowStartIdx
(
i
+
1
));
for
(
size_t
j
=
start
;
j
<
end
;
j
++
)
{
A
[
j
]
=
c
.
getElement
(
i
,
cCol
);
}
}
}
}
void
CpuSparseMatrix
::
randomizeUniform
()
{
CHECK_LE
(
elementCnt_
,
height_
*
width_
);
if
(
valueType_
==
FLOAT_VALUE
)
{
...
...
paddle/math/CpuSparseMatrix.h
浏览文件 @
95cdbfec
...
...
@@ -239,6 +239,15 @@ public:
const
unsigned
int
*
cols
,
const
real
*
values
);
/**
* @brief this_row = b_row * c_row[cCol]
*
* @param[in] cCol the column of matrix c used to scale each row of b
* @param[in] b CpuSparseMatrix
* @param[in] c Matrix
*/
void
rowScale
(
size_t
cCol
,
CpuSparseMatrix
&
b
,
Matrix
&
c
);
void
randomizeUniform
();
void
copyFrom
(
const
GpuSparseMatrix
&
src
,
hl_stream_t
stream
);
...
...
proto/ModelConfig.proto
浏览文件 @
95cdbfec
...
...
@@ -544,6 +544,9 @@ message LayerConfig {
// for batch normalization layer
// The small constant added to the variance to improve numeric stability.
optional
double
epsilon
=
60
[
default
=
0.00001
];
// for factorization machine layer
optional
uint32
factor_size
=
61
;
}
message
EvaluatorConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
95cdbfec
...
...
@@ -3870,6 +3870,21 @@ class ScaleSubRegionLayer(LayerBase):
image_conf
.
channels
)
@
config_layer
(
'factorization_machine'
)
class
FactorizationMachineLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
factor_size
,
**
xargs
):
super
(
FactorizationMachineLayer
,
self
).
__init__
(
name
,
'factorization_machine'
,
size
=
1
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'factorization machine layer must have one and only one input.'
)
self
.
config
.
factor_size
=
factor_size
input_layer
=
self
.
get_input_layer
(
0
)
psize
=
input_layer
.
size
*
factor_size
dims
=
[
input_layer
.
size
,
factor_size
]
self
.
create_input_parameter
(
0
,
psize
,
dims
)
# Deprecated, use a new layer specific class instead
@
config_func
def
Layer
(
name
,
type
,
**
xargs
):
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
95cdbfec
...
...
@@ -148,6 +148,7 @@ __all__ = [
'resize_layer'
,
'sub_seq_layer'
,
'scale_sub_region_layer'
,
'factorization_machine'
,
]
...
...
@@ -264,6 +265,8 @@ class LayerType(object):
SCALE_SUB_REGION_LAYER
=
'scale_sub_region'
FACTORIZATION_MACHINE
=
'factorization_machine'
@
staticmethod
def
is_layer_type
(
type_name
):
"""
...
...
@@ -7403,3 +7406,73 @@ def scale_sub_region_layer(input, indices, value, name=None):
parents
=
[
input
,
indices
],
num_filters
=
input
.
num_filters
,
size
=
input
.
size
)
@
wrap_name_default
()
@
wrap_act_default
(
act
=
LinearActivation
())
@
wrap_param_attr_default
()
@
layer_support
()
def
factorization_machine
(
input
,
factor_size
,
act
=
None
,
name
=
None
,
param_attr
=
None
,
layer_attr
=
None
):
"""
The Factorization Machine models pairwise feature interactions as inner
product of the learned latent vectors corresponding to each input feature.
The Factorization Machine can effectively capture feature interactions
especially when the input is sparse.
This implementation only consider the 2-order feature interactions using
Factorization Machine with the formula:
.. math::
y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j
\r
angle x_i x_j
Note:
X is the input vector with size n. V is the factor matrix. Each row of V
is the latent vector corresponding to each input dimesion. The size of
each latent vector is k.
For details of Factorization Machine, please refer to the paper:
Factorization machines.
.. code-block:: python
first_order = paddle.layer.fc(input=input,
size=1,
act=paddle.activation.Linear())
second_order = paddle.layer.factorization_machine(input=input,
factor_size=10)
fm = paddle.layer.addto(input=[first_order, second_order],
act=paddle.activation.Linear(),
bias_attr=False)
:param input: The input layer. Supported input types: all input data types
on CPU, and only dense input types on GPU.
:type input: LayerOutput
:param factor_size: The hyperparameter that defines the dimensionality of
the latent vector size.
:type context_len: int
:param act: Activation Type. Default is linear activation.
:type act: BaseActivation
:param param_attr: The parameter attribute. See ParameterAttribute for
details.
:type param_attr: ParameterAttribute
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute|None
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert
isinstance
(
input
,
LayerOutput
)
assert
factor_size
>
0
,
"the factor_size must be greater than 0."
Layer
(
inputs
=
[
Input
(
input
.
name
,
**
param_attr
.
attr
)],
name
=
name
,
factor_size
=
factor_size
,
type
=
LayerType
.
FACTORIZATION_MACHINE
,
active_type
=
act
.
name
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
FACTORIZATION_MACHINE
,
input
,
activation
=
act
,
size
=
1
)
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
浏览文件 @
95cdbfec
...
...
@@ -11,6 +11,7 @@ test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_l
test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer
test_seq_slice_layer test_cross_entropy_over_beam test_roi_pool_layer test_pooling3D_layer
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer
test_scale_sub_region_layer test_dot_prod_layer test_l2_distance_layer
)
test_scale_sub_region_layer test_dot_prod_layer test_l2_distance_layer
test_factorization_machine
)
export
whole_configs
=(
test_split_datasource
)
python/paddle/trainer_config_helpers/tests/configs/protostr/test_factorization_machine.protostr
0 → 100644
浏览文件 @
95cdbfec
type: "nn"
layers {
name: "data"
type: "data"
size: 1024
active_type: ""
}
layers {
name: "__factorization_machine_0__"
type: "factorization_machine"
size: 1
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___factorization_machine_0__.w0"
}
factor_size: 10
}
parameters {
name: "___factorization_machine_0__.w0"
size: 10240
initial_mean: 0.0
initial_std: 0.03125
dims: 1024
dims: 10
initial_strategy: 0
initial_smart: true
}
input_layer_names: "data"
output_layer_names: "__factorization_machine_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__factorization_machine_0__"
input_layer_names: "data"
output_layer_names: "__factorization_machine_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_factorization_machine.py
0 → 100644
浏览文件 @
95cdbfec
from
paddle.trainer_config_helpers
import
*
data
=
data_layer
(
name
=
'data'
,
size
=
1024
)
fm
=
factorization_machine
(
input
=
data
,
factor_size
=
10
)
outputs
(
fm
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录