Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
95545f76
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
95545f76
编写于
7月 09, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
checkpoint api optimized
上级
436bb450
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
104 addition
and
63 deletion
+104
-63
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+63
-41
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+41
-22
未找到文件。
python/paddle/fluid/io.py
浏览文件 @
95545f76
...
...
@@ -25,9 +25,7 @@ __all__ = [
'save_vars'
,
'save_params'
,
'save_persistables'
,
'load_vars'
,
'load_params'
,
'load_persistables'
,
'save_inference_model'
,
'load_inference_model'
,
'get_inference_program'
,
'save_checkpoint'
,
'load_checkpoint'
,
'clean_checkpoint'
,
'load_persist_vars_without_grad'
,
'load_lookup_table_vars'
,
'save_persist_vars_without_grad'
,
'get_latest_checkpoint_serial'
'clean_checkpoint'
]
...
...
@@ -805,11 +803,11 @@ CHECKPOINT_SEPARATOR = "_"
def
save_checkpoint
(
executor
,
checkpoint_dir
,
trainer_id
,
main_program
,
trainer_args
=
None
,
main_program
=
None
,
max_num_checkpoints
=
3
,
lookup_table
=
None
,
ps
_endpoint_list
=
None
):
ps
erver_endpoints
=
None
):
"""
This function filters out all checkpoint variables from the give
main_program and then saves these variables to the `checkpoint_dir`
...
...
@@ -836,16 +834,16 @@ def save_checkpoint(executor,
trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
and 'step_id'.
Defaut: None
main_program(Program
|None
): The program whose checkpoint variables will
be saved.
If it is None, the default main program will be used.
main_program(Program): The program whose checkpoint variables will
be saved.
max_num_checkpoints(int): The max number of total number of existing
checkpoints.
Default: 3
lookup_table(string|None): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps
_endpoint_list
(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get ps
_endpoint_list
by
ps
erver_endpoints
(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get ps
erver_endpoints
by
distribute arguments.
Returns:
...
...
@@ -873,11 +871,13 @@ def save_checkpoint(executor,
main_program=prog,
max_num_checkpoints=3,
lookup_table=table_name,
ps
_endpoint_list
= ps_endpoints)
ps
erver_endpoints
= ps_endpoints)
"""
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
assert
checkpoint_dir
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
if
trainer_args
:
assert
isinstance
(
trainer_args
,
dict
)
...
...
@@ -885,22 +885,28 @@ def save_checkpoint(executor,
is_chief
=
trainer_id
==
0
_make_chekcpoint_dirs
(
checkpoint_dir
)
serial
=
get_latest_checkpoint_serial
(
checkpoint_dir
)
+
1
serial
=
_
get_latest_checkpoint_serial
(
checkpoint_dir
)
+
1
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
save_trainer_args
(
cur_dir
,
trainer_id
,
trainer_args
)
_
save_trainer_args
(
cur_dir
,
trainer_id
,
trainer_args
)
if
is_chief
:
save_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
)
_
save_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
)
if
is_chief
and
lookup_table
and
ps
_endpoint_list
:
save_pserver_vars_by_notify
(
executor
,
cur_dir
,
lookup_table
,
ps_endpoint_list
)
if
is_chief
and
lookup_table
and
ps
erver_endpoints
:
_
save_pserver_vars_by_notify
(
executor
,
cur_dir
,
lookup_table
,
pserver_endpoints
)
_scroll_delete
(
checkpoint_dir
,
max_num_checkpoints
)
def
load_checkpoint
(
executor
,
checkpoint_dir
,
serial
,
main_program
):
def
load_checkpoint
(
executor
,
checkpoint_dir
,
main_program
,
role_id
=
0
,
is_trainer
=
True
,
load_trainer_args
=
None
,
load_lookup_table
=
None
):
"""
This function filters out all checkpoint variables from the give
main_program and then try to load these variables from the
...
...
@@ -924,13 +930,16 @@ def load_checkpoint(executor, checkpoint_dir, serial, main_program):
serial(int): The serial of checkpoint you would like to load.
main_program(Program): The program whose checkpoint variables will
be loaded.
role_id(int): the trainer id or the parameter server id.
is_trainer(bool): trainer is True and parameter server is False.
load_trainer_args(list|None): list about load trainer args.
load_lookup_table(str|None): the lookup table name
Returns:
None
Raises:
ValueError: If `checkpoint_dir` is None.
ValueError: If `serial` is None or `serial` is less than 0.
ValueError: If `main_program` is None.
Examples:
...
...
@@ -951,14 +960,27 @@ def load_checkpoint(executor, checkpoint_dir, serial, main_program):
if
checkpoint_dir
is
None
:
raise
ValueError
(
"'checkpoint_dir' should not be None"
)
serial
=
_get_latest_checkpoint_serial
(
checkpoint_dir
)
# there are nothing need to be loaded
if
serial
is
None
or
serial
<
0
:
r
aise
ValueError
(
"'serial' should not be None or <0 "
)
r
eturn
if
main_program
is
None
:
raise
ValueError
(
'main_program should not be None.'
)
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
load_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
,
True
)
if
is_trainer
and
load_trainer_args
is
None
:
cur_dir
=
_get_serial_dir
(
checkpoint_dir
,
serial
)
_load_persist_vars_without_grad
(
executor
,
cur_dir
,
main_program
,
True
)
return
if
is_trainer
and
load_trainer_args
:
return
_load_trainer_args
(
checkpoint_dir
,
serial
,
role_id
,
load_trainer_args
)
if
not
is_trainer
and
load_lookup_table
:
_load_lookup_table_vars
(
executor
,
checkpoint_dir
,
main_program
,
role_id
,
load_lookup_table
)
def
clean_checkpoint
(
checkpoint_dir
,
delete_dir
=
False
):
...
...
@@ -979,10 +1001,10 @@ def clean_checkpoint(checkpoint_dir, delete_dir=False):
os
.
rmdir
(
checkpoint_dir
)
def
load_persist_vars_without_grad
(
executor
,
dirname
,
program
,
has_model_dir
=
False
):
def
_
load_persist_vars_without_grad
(
executor
,
dirname
,
program
,
has_model_dir
=
False
):
"""
This function filters out all checkpoint variables from the give
program and then trys to load these variables from the given directory.
...
...
@@ -1011,10 +1033,10 @@ def load_persist_vars_without_grad(executor,
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.load_persist_vars_without_grad(executor=exe,
fluid.io.
_
load_persist_vars_without_grad(executor=exe,
dirname=param_path, program=prog, has_model_dir=True)
# In this example, `load_persist_vars_without_grad` function
# In this example, `
_
load_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then trys to load these variables form the
# folder "./my_paddle_model/__model__".
...
...
@@ -1031,7 +1053,7 @@ def load_persist_vars_without_grad(executor,
filename
=
None
)
def
load_lookup_table_vars
(
executor
,
dirname
,
program
,
pserver_id
,
table_name
):
def
_
load_lookup_table_vars
(
executor
,
dirname
,
program
,
pserver_id
,
table_name
):
"""
The parameter server will load lookup table's local file in
selectedrows variable.
...
...
@@ -1050,11 +1072,11 @@ def load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
.. code-block:: python
exe = fluid.Executor(fluid.CPUPlace())
dirname = "./checkpoints/checkpoint_9/
__model__
"
dirname = "./checkpoints/checkpoint_9/"
prog = fluid.default_main_program()
pserver_id = 1
table_name = "share_w"
fluid.io.load_lookup_table_vars(executor=exe,
fluid.io.
_
load_lookup_table_vars(executor=exe,
dirname=dirname, program=prog, pserver_id=pserver_id,
table_name=table_name)
"""
...
...
@@ -1081,7 +1103,7 @@ def load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
executor
.
run
(
load_prog
)
def
save_persist_vars_without_grad
(
executor
,
dirname
,
program
):
def
_
save_persist_vars_without_grad
(
executor
,
dirname
,
program
):
"""
This function filters out all checkpoint variables from the give
program and then save these variables to a sub-folder '__model__' of
...
...
@@ -1108,10 +1130,10 @@ def save_persist_vars_without_grad(executor, dirname, program):
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.save_persist_vars_without_grad(executor=exe,
fluid.io.
_
save_persist_vars_without_grad(executor=exe,
dirname=param_path, program=prog)
# In this example, `save_persist_vars_without_grad` function
# In this example, `
_
save_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then saves these variables to the folder
# "./my_paddle_model/__model__".
...
...
@@ -1127,8 +1149,8 @@ def save_persist_vars_without_grad(executor, dirname, program):
_write_success
(
cur_dir
)
def
save_pserver_vars_by_notify
(
executor
,
dirname
,
lookup_table
,
ps_endpoint_list
):
def
_
save_pserver_vars_by_notify
(
executor
,
dirname
,
lookup_table
,
ps_endpoint_list
):
"""
This function will send checkpoint notify message from Trainer 0
to all the pservers.
...
...
@@ -1156,7 +1178,7 @@ def save_pserver_vars_by_notify(executor, dirname, lookup_table,
table_name = "share_w"
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
fluid.io.save_pserver_vars_by_notify(executor=exe,
fluid.io.
_
save_pserver_vars_by_notify(executor=exe,
dirname=param_path, lookup_table=table_name,
ps_endpoint_list=ps_endpoints)
"""
...
...
@@ -1175,7 +1197,7 @@ def save_pserver_vars_by_notify(executor, dirname, lookup_table,
executor
.
run
(
checkpoint_notify_program
)
def
save_trainer_args
(
dirname
,
trainer_id
,
trainer_args
):
def
_
save_trainer_args
(
dirname
,
trainer_id
,
trainer_args
):
assert
isinstance
(
trainer_args
,
dict
)
cur_dir
=
_get_trainer_dir
(
dirname
,
trainer_id
)
...
...
@@ -1187,7 +1209,7 @@ def save_trainer_args(dirname, trainer_id, trainer_args):
_write_success
(
cur_dir
)
def
load_trainer_args
(
checkpoint_dir
,
serial
,
trainer_id
,
trainer_args
):
def
_
load_trainer_args
(
checkpoint_dir
,
serial
,
trainer_id
,
trainer_args
):
"""
trainer will load some args from it's independent directory,
such as epoch_id and step_id.
...
...
@@ -1208,7 +1230,7 @@ def load_trainer_args(checkpoint_dir, serial, trainer_id, trainer_args):
trainer_id = 2
trainer_args = ["epoch_id", "step_id"]
fluid.io.load_trainer_args(checkpoint_dir=param_path, serial=serial,
fluid.io.
_
load_trainer_args(checkpoint_dir=param_path, serial=serial,
trainer_id=trainer_id, trainer_args=trainer_args)
"""
assert
isinstance
(
trainer_args
,
list
)
...
...
@@ -1339,7 +1361,7 @@ def _write_success(dirname):
f
.
write
(
now
)
def
get_latest_checkpoint_serial
(
checkpoint_dir
):
def
_
get_latest_checkpoint_serial
(
checkpoint_dir
):
"""
get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory
...
...
python/paddle/fluid/trainer.py
浏览文件 @
95545f76
...
...
@@ -277,31 +277,14 @@ class Trainer(object):
exe
.
run
(
self
.
startup_program
)
if
self
.
checkpoint_cfg
and
self
.
checkpoint_cfg
.
load_serial
:
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
place
)
io
.
load_checkpoint
(
exe
,
self
.
checkpoint_cfg
.
checkpoint_dir
,
self
.
checkpoint_cfg
.
load_serial
,
self
.
startup_program
)
if
not
self
.
checkpoint_cfg
.
pserver_id
:
epoch_id
,
step_id
=
io
.
load_trainer_args
(
self
.
checkpoint_cfg
.
checkpoint_dir
,
self
.
checkpoint_cfg
.
load_serial
,
self
.
trainer_id
,
self
.
_get_checkpoint_load_args
())
self
.
checkpoint_cfg
.
epoch_id
=
int
(
epoch_id
)
self
.
checkpoint_cfg
.
step_id
=
int
(
step_id
)
else
:
if
self
.
checkpoint_cfg
.
lookup_table_name
:
io
.
load_lookup_table_vars
(
exe
,
self
.
checkpoint_cfg
.
checkpoint_dir
,
self
.
startup_program
,
self
.
checkpoint_cfg
.
pserver_id
,
self
.
checkpoint_cfg
.
lookup_table_name
)
self
.
_load_checkpoint
()
if
param_path
and
os
.
path
.
isdir
(
param_path
):
# load params from param_path into scope
io
.
load_persist_vars_without_grad
(
exe
,
dirname
=
param_path
,
program
=
self
.
startup_program
)
io
.
load_persistables
(
executor
=
exe
,
dirname
=
param_path
,
main_program
=
self
.
startup_program
)
def
_transpile_nccl2_dist
(
self
):
# PADDLE_TRAINER_IPS
...
...
@@ -580,6 +563,42 @@ class Trainer(object):
main_program
=
self
.
train_program
,
max_num_checkpoints
=
self
.
checkpoint_cfg
.
max_num_checkpoints
)
def
_load_checkpoint
(
self
):
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
io
.
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
)
if
not
self
.
checkpoint_cfg
.
pserver_id
:
load_trainer_args
=
self
.
_get_checkpoint_load_args
()
trainer_args
=
io
.
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
trainer_id
,
is_trainer
=
True
,
load_trainer_args
=
load_trainer_args
)
if
len
(
trainer_args
)
!=
2
:
raise
ValueError
(
"the return trainer_args length do not equal _get_checkpoint_load_args"
)
self
.
checkpoint_cfg
.
epoch_id
=
int
(
trainer_args
[
0
])
self
.
checkpoint_cfg
.
step_id
=
int
(
trainer_args
[
1
])
else
:
if
self
.
checkpoint_cfg
.
lookup_table_name
:
io
.
load_checkpoint
(
executor
=
exe
,
checkpoint_dir
=
self
.
checkpoint_cfg
.
checkpoint_dir
,
main_program
=
self
.
startup_program
,
role_id
=
self
.
checkpoint_cfg
.
pserver_id
,
is_trainer
=
False
,
load_trainer_args
=
None
,
load_lookup_table
=
self
.
checkpoint_cfg
.
lookup_table_name
)
def
build_feed_var_list
(
program
,
feed_order
):
if
not
isinstance
(
program
,
framework
.
Program
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录