Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
954b0e11
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
954b0e11
编写于
8月 27, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
init fusion seq expand concat fc op
上级
d361624c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
458 addition
and
0 deletion
+458
-0
paddle/fluid/operators/fusion_seq_concat_fc_op.cc
paddle/fluid/operators/fusion_seq_concat_fc_op.cc
+417
-0
paddle/fluid/operators/fusion_seq_concat_fc_op.h
paddle/fluid/operators/fusion_seq_concat_fc_op.h
+41
-0
未找到文件。
paddle/fluid/operators/fusion_seq_concat_fc_op.cc
0 → 100644
浏览文件 @
954b0e11
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fusion_seq_concat_fc_op.h"
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
void
FusionSeqConcatFCOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Input(C0) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMWeight"
),
"Input(LSTMWeight) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMBias"
),
"Input(LSTMBias) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionWeight"
),
"Input(AttentionWeight) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionedX"
),
"Output(AttentionedX) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionFCOut"
),
"Output(AttentionFCOut) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMX"
),
"Output(LSTMX) of FusionSeqConcatFC should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMOUT"
),
"Output(LSTMOUT) of FusionSeqConcatFC should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
M
=
x_dims
[
1
];
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
auto
w_dims
=
ctx
->
GetInputDim
(
"LSTMWeight"
);
const
int
D
=
w_dims
[
1
]
/
4
;
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
"Input(LSTMWeight)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
w_dims
[
0
],
D
+
M
,
"LSTMWeight dims should be (%d + %d) * %d."
,
D
+
M
,
4
*
D
);
auto
b_dims
=
ctx
->
GetInputDim
(
"LSTMBias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"Input(LSTMBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"LSTMBias dims should be 1 x %d."
,
4
*
D
);
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
4
*
D
,
"LSTMBias dims should be 1 x %d."
,
4
*
D
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE_EQ
(
c_dims
.
size
(),
2
,
"Input(C0)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
c_dims
[
1
],
D
,
"C0 dims should be N x %d."
,
D
);
if
(
ctx
->
HasInput
(
"H0"
))
{
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"should be the same."
);
}
auto
atten_w_dims
=
ctx
->
GetInputDim
(
"AttentionWeight"
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
.
size
(),
2
,
"Input(AttentionWeight)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
0
],
M
+
D
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
1
],
1
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
if
(
ctx
->
HasInput
(
"AttentionBias"
))
{
auto
atten_b_dims
=
ctx
->
GetInputDim
(
"AttentionBias"
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
.
size
(),
2
,
"Input(AttentionBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
0
],
1
,
"AttentionBias shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
1
],
1
,
"AttentionBias shapes must be 1 * 1."
);
}
if
(
ctx
->
HasInput
(
"AttentionScalar"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalar"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalar)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
}
if
(
ctx
->
HasInput
(
"AttentionScalarBias"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalarBias"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionScalar"
),
"AttentionScalar should not be null when have AttentionScalarBias."
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalarBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
}
framework
::
DDim
out_dims
({
x_dims
[
0
],
D
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"AttentionedX"
,
{
x_dims
[
0
],
1
});
ctx
->
SetOutputDim
(
"LSTMX"
,
{
1
,
M
});
ctx
->
SetOutputDim
(
"LSTMOUT"
,
{
1
,
4
*
D
});
// AttentionFCOut should be reshape as (maxseqlen,1) in runtime
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Cell"
);
}
framework
::
OpKernelType
FusionSeqConcatFCOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
void
FusionSeqConcatFCOpMaker
::
Make
()
{
AddInput
(
"X"
,
"(LoDTensor) the input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x."
);
AddInput
(
"C0"
,
"(Tensor) LSTM C0"
"This is a tensor with shape (N x D), where N is the batch size, D "
"is the gate size."
"C0 is necessary because of attention."
);
AddInput
(
"H0"
,
"(Tensor, optional) LSTM H0"
"This is a tensor with shape (N x D), where N is the "
"batch size and D is the gate size."
)
.
AsDispensable
();
AddInput
(
"AttentionWeight"
,
"(Tensor) the weights of attention fc. Always relu the fc result."
"The shape is ((M+D) x 1), where M is the dim size of x, D is the "
"gate size of LSTM."
);
AddInput
(
"AttentionBias"
,
"(Tensor, optional) the bias of attention fc."
"The shape is (1 x 1)"
)
.
AsDispensable
();
AddInput
(
"AttentionScalar"
,
"(Tensor, optional) the scalar on the result of attentioned fc. "
"Always relu the Scalar."
"The shape is (1 x 1)"
)
.
AsDispensable
();
AddInput
(
"AttentionScalarBias"
,
"(Tensor, optional) the scalar bias of attention fc."
"The shape is (1 x 1)"
)
.
AsDispensable
();
AddInput
(
"LSTMWeight"
,
"(Tensor) the combined weight of LSTM"
" - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
"is the dim size of x"
" - Weight = {W_forget, W_input, W_output, W_cell}"
);
AddInput
(
"LSTMBias"
,
"(Tensor) the combined bias of LSTM, shape (1x4D)."
"Note: we should add the bias of hidden and context accorindg to "
"the same gate: "
"{B_forget, B_input, B_output, B_cell}"
);
AddOutput
(
"Hidden"
,
"(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
AddOutput
(
"Cell"
,
"(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
AddOutput
(
"AttentionedX"
,
"(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
" where T is the total time steps in this mini-batch,"
" D is the hidden size."
)
.
AsIntermediate
();
AddOutput
(
"AttentionFCOut"
,
"(Tensor) (max_seq_len, 1), compute at each step."
)
.
AsIntermediate
();
AddOutput
(
"LSTMX"
,
"(Tensor) the input X of LSTM for each step."
"Shape is (1 x M), where M is the x frame size"
)
.
AsIntermediate
();
AddOutput
(
"LSTMOUT"
,
"(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
"Shape is (1 x 4D), where M is the x frame size"
)
.
AsIntermediate
();
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"(string, default: sigmoid)"
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by default."
)
.
SetDefault
(
"sigmoid"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"cell_activation"
,
"(string, default: tanh)"
"The activation for cell output, `tanh` by defalut."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddAttr
<
std
::
string
>
(
"candidate_activation"
,
"(string, default: tanh)"
"The activation for candidate hidden state, "
"`tanh` by default."
)
.
SetDefault
(
"tanh"
)
.
InEnum
({
"sigmoid"
,
"tanh"
,
"relu"
,
"identity"
});
AddComment
(
R"DOC(
Fusion Sequence expand + concat + fc Operator.
Only support seq_expand ref_level=0,
and the ref lod of seq_expand level is the first input of concat,
and the other inputs should have same lod and same batch size of ref lod.
)DOC"
);
}
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template
<
typename
T
>
inline
void
bias_relu
(
const
int
n
,
const
T
*
x
,
const
T
*
bias
,
T
*
y
)
{
if
(
bias
)
{
math
::
vec_add_bias
<
T
,
platform
::
jit
::
avx
>
(
n
,
*
bias
,
x
,
y
);
math
::
vec_relu
<
T
,
platform
::
jit
::
avx
>
(
n
,
y
,
y
);
}
else
{
math
::
vec_relu
<
T
,
platform
::
jit
::
avx
>
(
n
,
x
,
y
);
}
}
template
<
typename
T
>
inline
void
vec_softmax
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
T
scalar
=
x
[
0
];
// max
for
(
int
i
=
1
;
i
<
n
;
++
i
)
{
scalar
=
scalar
<
x
[
i
]
?
x
[
i
]
:
scalar
;
}
math
::
vec_add_bias
<
T
,
platform
::
jit
::
avx
>
(
n
,
-
scalar
,
x
,
y
);
// sub
math
::
vec_exp
<
T
>
(
n
,
y
,
y
);
// exp
// sum
scalar
=
T
(
0
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
scalar
+=
y
[
i
];
}
math
::
vec_scal
<
T
>
(
n
,
static_cast
<
T
>
(
1
)
/
scalar
,
y
);
// scale
}
template
<
typename
T
>
class
FusionSeqConcatFCKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
atten_w
=
ctx
.
Input
<
Tensor
>
(
"AttentionWeight"
);
auto
*
atten_b
=
ctx
.
Input
<
Tensor
>
(
"AttentionBias"
);
auto
*
atten_scalar
=
ctx
.
Input
<
Tensor
>
(
"AttentionScalar"
);
auto
*
atten_scalar_bias
=
ctx
.
Input
<
Tensor
>
(
"AttentionScalarBias"
);
auto
*
lstm_w
=
ctx
.
Input
<
Tensor
>
(
"LSTMWeight"
);
auto
*
lstm_b
=
ctx
.
Input
<
Tensor
>
(
"LSTMBias"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
auto
*
atted_x
=
ctx
.
Output
<
Tensor
>
(
"AttentionedX"
);
auto
*
fc_out
=
ctx
.
Output
<
Tensor
>
(
"AttentionFCOut"
);
auto
*
lstm_x
=
ctx
.
Output
<
Tensor
>
(
"LSTMX"
);
auto
*
lstm_out
=
ctx
.
Output
<
Tensor
>
(
"LSTMOUT"
);
// some shape should be reshape here since infershape can not get lod info
auto
x_lod
=
x
->
lod
();
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
// batch size
auto
x_dims
=
x
->
dims
();
// T x M
auto
w_dims
=
lstm_w
->
dims
();
// (D+M) x 4D
const
int
total_T
=
x_dims
[
0
];
const
int
M
=
x_dims
[
1
];
// x frame size
const
int
D
=
w_dims
[
1
]
/
4
;
// gate frame size
const
int
D2
=
D
*
2
;
const
int
D3
=
D
*
3
;
const
int
D4
=
w_dims
[
1
];
int
max_seq_len
=
x_lod
[
0
][
1
];
for
(
int
i
=
1
;
i
<
N
;
++
i
)
{
int
len
=
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
];
max_seq_len
=
max_seq_len
<
len
?
len
:
max_seq_len
;
}
PADDLE_ENFORCE_EQ
(
x_lod
.
size
(),
1
,
"Input(X)'s lod size must be 1."
);
PADDLE_ENFORCE_EQ
(
c0
->
dims
()[
0
],
N
,
"C0 dims should be %d x %d."
,
N
,
D
);
fc_out
->
Resize
({
max_seq_len
,
1
});
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
auto
&
act_gate_str
=
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
);
auto
&
act_cell_str
=
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
);
auto
&
act_cand_str
=
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
);
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx
))
{
math
::
VecActivations
<
T
,
platform
::
jit
::
avx
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
else
{
math
::
VecActivations
<
T
,
platform
::
jit
::
isa_any
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
NULL
;
const
T
*
c0_data
=
c0
->
data
<
T
>
();
const
T
*
lstm_w_data
=
lstm_w
->
data
<
T
>
();
const
T
*
lstm_b_data
=
lstm_b
->
data
<
T
>
();
const
T
*
atten_w_data
=
atten_w
->
data
<
T
>
();
const
T
*
atten_b_data
=
atten_b
?
atten_b
->
data
<
T
>
()
:
NULL
;
const
T
*
atten_scalar_data
=
atten_scalar
?
atten_scalar
->
data
<
T
>
()
:
NULL
;
const
T
*
atten_scalar_bias_data
=
atten_scalar_bias
?
atten_scalar_bias
->
data
<
T
>
()
:
NULL
;
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
cell_out_data
=
cell_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
atted_x_data
=
atted_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
fc_out_data
=
fc_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
lstm_x_data
=
lstm_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
lstm_out_data
=
lstm_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
1
,
M
,
x_data
,
atten_w_data
,
atted_x_data
,
atten_b_data
);
const
T
*
cur_atten_x_data
=
atted_x_data
;
const
T
*
cur_x_data
=
x_data
;
const
T
*
prev_cell_data
=
NULL
;
const
T
*
prev_hidden_data
=
NULL
;
T
*
cur_cell_out_data
=
cell_out_data
;
T
*
cur_hidden_out_data
=
hidden_out_data
;
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
int
seq_len
=
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
];
prev_cell_data
=
c0_data
+
i
*
D
;
prev_hidden_data
=
h0_data
?
h0_data
+
i
*
D
:
NULL
;
for
(
int
step
=
0
;
step
<
seq_len
;
++
step
)
{
/// 1. compute attention vector
// 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
prev_cell_bias
=
blas
.
DOT
(
D
,
prev_cell_data
,
atten_w_data
+
M
);
// 1b. add cell bias and relu
bias_relu
<
T
>
(
seq_len
,
cur_atten_x_data
,
&
prev_cell_bias
,
fc_out_data
);
// 1c. fc scalar
if
(
atten_scalar_data
)
{
blas
.
SCAL
(
seq_len
,
*
atten_scalar_data
,
fc_out_data
);
bias_relu
<
T
>
(
seq_len
,
fc_out_data
,
atten_scalar_bias_data
,
fc_out_data
);
}
// 1d. softmax
vec_softmax
<
T
>
(
seq_len
,
fc_out_data
,
fc_out_data
);
// mul x(seq_len*M) and sum pool
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
1
,
M
,
seq_len
,
fc_out_data
,
cur_x_data
,
lstm_x_data
);
/// 2. compute LSTM step
// lstm weight : concat[forget , input , output , tilde]
// shape : (D + M) x (4 * D)
// fc inputX(1xM) * weightX(M*(4D)) => 1 x 4D
blas
.
MatMul
(
1
,
D4
,
M
,
lstm_x_data
,
lstm_w_data
+
D
*
D4
,
lstm_out_data
);
if
(
prev_hidden_data
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D4
,
D
,
static_cast
<
T
>
(
1
),
prev_hidden_data
,
D
,
lstm_w_data
,
D4
,
static_cast
<
T
>
(
1
),
lstm_out_data
,
D4
);
}
// since input is 1xM, so can use add bias
blas
.
VADD
(
D4
,
lstm_b_data
,
lstm_out_data
,
lstm_out_data
);
// gate act: sigmoid
act_gate
(
D3
,
lstm_out_data
,
lstm_out_data
);
// candicate act: tanh
act_cand
(
D
,
lstm_out_data
+
D3
,
lstm_out_data
+
D3
);
// a = forget * prev_cell
blas
.
VMUL
(
D
,
lstm_out_data
,
prev_cell_data
,
lstm_out_data
);
// b = input * tilde
blas
.
VMUL
(
D
,
lstm_out_data
+
D
,
lstm_out_data
+
D3
,
lstm_out_data
+
D
);
// cell_out = a + b
blas
.
VADD
(
D
,
lstm_out_data
,
lstm_out_data
+
D
,
cur_cell_out_data
);
// state act tanh(cell_out) * output_gate
act_cell
(
D
,
cur_cell_out_data
,
lstm_out_data
);
blas
.
VMUL
(
D
,
lstm_out_data
,
lstm_out_data
+
D2
,
cur_hidden_out_data
);
prev_hidden_data
=
cur_hidden_out_data
;
prev_cell_data
=
cur_cell_out_data
;
cur_cell_out_data
=
cur_cell_out_data
+
D
;
cur_hidden_out_data
=
cur_hidden_out_data
+
D
;
}
cur_x_data
=
cur_x_data
+
seq_len
*
M
;
cur_atten_x_data
=
cur_atten_x_data
+
seq_len
;
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fusion_seq_concat_fc
,
ops
::
FusionSeqConcatFCOp
,
ops
::
FusionSeqConcatFCOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OP_CPU_KERNEL
(
fusion_seq_concat_fc
,
ops
::
FusionSeqConcatFCKernel
<
float
>
,
ops
::
FusionSeqConcatFCKernel
<
double
>
);
paddle/fluid/operators/fusion_seq_concat_fc_op.h
0 → 100644
浏览文件 @
954b0e11
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
class
FusionSeqConcatFCOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
FusionSeqConcatFCOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录