提交 9277c9d6 编写于 作者: M miemie2013

f

上级 5549e083
architecture: FCOS
max_iters: 360000
use_gpu: true
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: ""
metric: COCO
weights: output/fcos_rt_dla34_fpn_4x/model_final
num_classes: 80
FCOS:
backbone: DLA
fpn: FPN
fcos_head: FCOSHead
DLA:
norm_type: sync_bn
levels: [1, 1, 1, 2, 2, 1]
channels: [16, 32, 64, 128, 256, 512]
feature_maps: [3, 4, 5]
FPN:
min_level: 3
max_level: 5
num_chan: 256
use_c5: false
spatial_scale: [0.03125, 0.0625, 0.125]
has_extra_convs: false
FCOSHead:
num_classes: 80
fpn_stride: [8, 16, 32]
num_convs: 4
norm_type: "gn"
fcos_loss: FCOSLoss
norm_reg_targets: True
centerness_on_reg: True
use_dcn_in_tower: False
nms: MultiClassNMS
MultiClassNMS:
score_threshold: 0.025
nms_top_k: 1000
keep_top_k: 100
nms_threshold: 0.6
background_label: -1
FCOSLoss:
loss_alpha: 0.25
loss_gamma: 2.0
iou_loss_type: "giou"
reg_weights: 1.0
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [300000, 340000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
TrainReader:
inputs_def:
fields: ['image', 'im_info', 'fcos_target']
dataset:
!COCODataSet
image_dir: train2017
anno_path: annotations/instances_train2017.json
dataset_dir: dataset/coco
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: false
- !RandomFlipImage
prob: 0.5
- !NormalizeImage
is_channel_first: false
is_scale: false
mean: [103.53, 116.28, 123.675]
std: [1.0, 1.0, 1.0]
- !ResizeImage
target_size: [256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
max_size: 900
interp: 1
use_cv2: true
- !Permute
to_bgr: false
channel_first: true
batch_transforms:
- !PadBatch
pad_to_stride: 32
use_padded_im_info: false
- !Gt2FCOSTarget
object_sizes_boundary: [64, 128]
center_sampling_radius: 1.5
downsample_ratios: [8, 16, 32]
norm_reg_targets: True
batch_size: 16
shuffle: true
worker_num: 4
use_process: false
EvalReader:
inputs_def:
fields: ['image', 'im_id', 'im_shape', 'im_info']
dataset:
!COCODataSet
image_dir: val2017
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: false
with_mixup: false
- !NormalizeImage
is_channel_first: false
is_scale: false
mean: [103.53, 116.28, 123.675]
std: [1.0, 1.0, 1.0]
- !ResizeImage
target_size: 512
max_size: 736
interp: 1
use_cv2: true
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadBatch
pad_to_stride: 32
use_padded_im_info: true
batch_size: 1
shuffle: false
worker_num: 2
use_process: false
TestReader:
inputs_def:
# set image_shape if needed
fields: ['image', 'im_id', 'im_shape', 'im_info']
dataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: false
with_mixup: false
- !NormalizeImage
is_channel_first: false
is_scale: false
mean: [103.53, 116.28, 123.675]
std: [1.0, 1.0, 1.0]
- !ResizeImage
interp: 1
max_size: 736
target_size: 512
use_cv2: true
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadBatch
pad_to_stride: 32
use_padded_im_info: true
batch_size: 1
shuffle: false
architecture: FCOS
max_iters: 360000
use_gpu: true
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
weights: output/fcos_rt_r50_fpn_4x/model_final
num_classes: 80
FCOS:
backbone: ResNet
fpn: FPN
fcos_head: FCOSHead
ResNet:
norm_type: sync_bn
norm_decay: 0.
depth: 50
feature_maps: [3, 4, 5]
variant: b
freeze_at: 2
FPN:
min_level: 3
max_level: 5
num_chan: 256
use_c5: false
spatial_scale: [0.03125, 0.0625, 0.125]
has_extra_convs: false
FCOSHead:
num_classes: 80
fpn_stride: [8, 16, 32]
num_convs: 4
norm_type: "gn"
fcos_loss: FCOSLoss
norm_reg_targets: True
centerness_on_reg: True
use_dcn_in_tower: False
nms: MultiClassNMS
MultiClassNMS:
score_threshold: 0.025
nms_top_k: 1000
keep_top_k: 100
nms_threshold: 0.6
background_label: -1
FCOSLoss:
loss_alpha: 0.25
loss_gamma: 2.0
iou_loss_type: "giou"
reg_weights: 1.0
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [300000, 340000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
TrainReader:
inputs_def:
fields: ['image', 'im_info', 'fcos_target']
dataset:
!COCODataSet
image_dir: train2017
anno_path: annotations/instances_train2017.json
dataset_dir: dataset/coco
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: false
- !RandomFlipImage
prob: 0.5
- !NormalizeImage
is_channel_first: false
is_scale: false
mean: [103.53, 116.28, 123.675]
std: [1.0, 1.0, 1.0]
- !ResizeImage
target_size: [256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
max_size: 900
interp: 1
use_cv2: true
- !Permute
to_bgr: false
channel_first: true
batch_transforms:
- !PadBatch
pad_to_stride: 32
use_padded_im_info: false
- !Gt2FCOSTarget
object_sizes_boundary: [64, 128]
center_sampling_radius: 1.5
downsample_ratios: [8, 16, 32]
norm_reg_targets: True
batch_size: 16
shuffle: true
worker_num: 4
use_process: false
EvalReader:
inputs_def:
fields: ['image', 'im_id', 'im_shape', 'im_info']
dataset:
!COCODataSet
image_dir: val2017
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: false
with_mixup: false
- !NormalizeImage
is_channel_first: false
is_scale: false
mean: [103.53, 116.28, 123.675]
std: [1.0, 1.0, 1.0]
- !ResizeImage
target_size: 512
max_size: 736
interp: 1
use_cv2: true
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadBatch
pad_to_stride: 32
use_padded_im_info: true
batch_size: 1
shuffle: false
worker_num: 2
use_process: false
TestReader:
inputs_def:
# set image_shape if needed
fields: ['image', 'im_id', 'im_shape', 'im_info']
dataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: false
with_mixup: false
- !NormalizeImage
is_channel_first: false
is_scale: false
mean: [103.53, 116.28, 123.675]
std: [1.0, 1.0, 1.0]
- !ResizeImage
interp: 1
max_size: 736
target_size: 512
use_cv2: true
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadBatch
pad_to_stride: 32
use_padded_im_info: true
batch_size: 1
shuffle: false
...@@ -35,6 +35,7 @@ from . import bifpn ...@@ -35,6 +35,7 @@ from . import bifpn
from . import cspdarknet from . import cspdarknet
from . import acfpn from . import acfpn
from . import ghostnet from . import ghostnet
from . import dla
from .resnet import * from .resnet import *
from .resnext import * from .resnext import *
...@@ -57,3 +58,4 @@ from .bifpn import * ...@@ -57,3 +58,4 @@ from .bifpn import *
from .cspdarknet import * from .cspdarknet import *
from .acfpn import * from .acfpn import *
from .ghostnet import * from .ghostnet import *
from .dla import *
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import OrderedDict
import paddle.fluid.layers as L
from ppdet.core.workspace import register
from ppdet.modeling.ops import Conv2dUnit
def get_norm(norm_type):
assert norm_type in ['bn', 'sync_bn', 'gn', 'affine_channel']
bn = 0
gn = 0
af = 0
if norm_type == 'bn':
bn = 1
elif norm_type == 'sync_bn':
bn = 1
elif norm_type == 'gn':
gn = 1
elif norm_type == 'affine_channel':
af = 1
return bn, gn, af
class BasicBlock(object):
def __init__(self, norm_type, inplanes, planes, stride=1, name=''):
super(BasicBlock, self).__init__()
bn, gn, af = get_norm(norm_type)
self.conv1 = Conv2dUnit(inplanes, planes, 3, stride=stride, bias_attr=False, bn=bn, gn=gn, af=af, act='relu', name=name+'.conv1')
self.conv2 = Conv2dUnit(planes, planes, 3, stride=1, bias_attr=False, bn=bn, gn=gn, af=af, act=None, name=name+'.conv2')
self.stride = stride
def __call__(self, x, residual=None):
if residual is None:
residual = x
out = self.conv1(x)
out = self.conv2(out)
out = L.elementwise_add(x=out, y=residual, act=None)
out = L.relu(out)
return out
class Root(object):
def __init__(self, norm_type, in_channels, out_channels, kernel_size, residual, name=''):
super(Root, self).__init__()
bn, gn, af = get_norm(norm_type)
self.conv = Conv2dUnit(in_channels, out_channels, kernel_size, stride=1, bias_attr=False, bn=bn, gn=gn, af=af, act=None, name=name+'.conv')
self.residual = residual
def __call__(self, *x):
children = x
x = L.concat(list(x), axis=1)
x = self.conv(x)
if self.residual:
x += children[0]
x = L.relu(x)
return x
class Tree(object):
def __init__(self, norm_type, levels, block, in_channels, out_channels, stride=1,
level_root=False, root_dim=0, root_kernel_size=1, root_residual=False, name=''):
super(Tree, self).__init__()
if root_dim == 0:
root_dim = 2 * out_channels
if level_root:
root_dim += in_channels
if levels == 1:
self.tree1 = block(norm_type, in_channels, out_channels, stride, name=name+'.tree1')
self.tree2 = block(norm_type, out_channels, out_channels, 1, name=name+'.tree2')
else:
self.tree1 = Tree(norm_type, levels - 1, block, in_channels, out_channels,
stride, root_dim=0,
root_kernel_size=root_kernel_size, root_residual=root_residual, name=name+'.tree1')
self.tree2 = Tree(norm_type, levels - 1, block, out_channels, out_channels,
root_dim=root_dim + out_channels,
root_kernel_size=root_kernel_size, root_residual=root_residual, name=name+'.tree2')
if levels == 1:
self.root = Root(norm_type, root_dim, out_channels, root_kernel_size, root_residual, name=name+'.root')
self.level_root = level_root
self.root_dim = root_dim
self.downsample = False
self.stride = stride
self.project = None
self.levels = levels
if stride > 1:
self.downsample = True
if in_channels != out_channels:
bn, gn, af = get_norm(norm_type)
self.project = Conv2dUnit(in_channels, out_channels, 1, stride=1, bias_attr=False, bn=bn, gn=gn, af=af, act=None, name=name+'.project')
def __call__(self, x, residual=None, children=None):
children = [] if children is None else children
bottom = L.pool2d(input=x, pool_size=self.stride, pool_stride=self.stride, pool_type='max') if self.downsample else x
residual = self.project(bottom) if self.project else bottom
if self.level_root:
children.append(bottom)
x1 = self.tree1(x, residual)
if self.levels == 1:
x2 = self.tree2(x1)
x = self.root(x2, x1, *children)
else:
children.append(x1)
x = self.tree2(x1, children=children)
return x
__all__ = ['DLA']
@register
class DLA(object):
__shared__ = ['norm_type', 'levels', 'channels']
def __init__(self,
norm_type="sync_bn",
levels=[1, 1, 1, 2, 2, 1],
channels=[16, 32, 64, 128, 256, 512],
block=BasicBlock,
residual_root=False,
feature_maps=[3, 4, 5]):
self.norm_type = norm_type
self.channels = channels
self.feature_maps = feature_maps
self._out_features = ["level{}".format(i) for i in range(6)] # 每个特征图的名字
self._out_feature_channels = {k: channels[i] for i, k in enumerate(self._out_features)} # 每个特征图的输出通道数
self._out_feature_strides = {k: 2 ** i for i, k in enumerate(self._out_features)} # 每个特征图的下采样倍率
bn, gn, af = get_norm(norm_type)
self.base_layer = Conv2dUnit(3, channels[0], 7, stride=1, bias_attr=False, bn=bn, gn=gn, af=af, act='relu', name='dla.base_layer')
self.level0 = self._make_conv_level(channels[0], channels[0], levels[0], name='dla.level0')
self.level1 = self._make_conv_level(channels[0], channels[1], levels[1], stride=2, name='dla.level1')
self.level2 = Tree(norm_type, levels[2], block, channels[1], channels[2], 2,
level_root=False, root_residual=residual_root, name='dla.level2')
self.level3 = Tree(norm_type, levels[3], block, channels[2], channels[3], 2,
level_root=True, root_residual=residual_root, name='dla.level3')
self.level4 = Tree(norm_type, levels[4], block, channels[3], channels[4], 2,
level_root=True, root_residual=residual_root, name='dla.level4')
self.level5 = Tree(norm_type, levels[5], block, channels[4], channels[5], 2,
level_root=True, root_residual=residual_root, name='dla.level5')
def _make_conv_level(self, inplanes, planes, convs, stride=1, name=''):
modules = []
for i in range(convs):
bn, gn, af = get_norm(self.norm_type)
modules.append(Conv2dUnit(inplanes, planes, 3, stride=stride if i == 0 else 1, bias_attr=False, bn=bn, gn=gn, af=af, act='relu', name=name+'.conv%d'%i))
inplanes = planes
return modules
def __call__(self, x):
outs = []
x = self.base_layer(x)
for i in range(6):
name = 'level{}'.format(i)
level = getattr(self, name)
if isinstance(level, list):
for ly in level:
x = ly(x)
else:
x = level(x)
if i in self.feature_maps:
outs.append(x)
return OrderedDict([('res{}_sum'.format(self.feature_maps[idx]), feat)
for idx, feat in enumerate(outs)])
\ No newline at end of file
...@@ -1565,3 +1565,128 @@ class RetinaOutputDecoder(object): ...@@ -1565,3 +1565,128 @@ class RetinaOutputDecoder(object):
self.nms_top_k = pre_nms_top_n self.nms_top_k = pre_nms_top_n
self.keep_top_k = detections_per_im self.keep_top_k = detections_per_im
self.nms_eta = nms_eta self.nms_eta = nms_eta
class Conv2dUnit(object):
def __init__(self,
input_dim,
filters,
filter_size,
stride=1,
bias_attr=False,
bn=0,
gn=0,
af=0,
groups=32,
act=None,
freeze_norm=False,
is_test=False,
norm_decay=0.,
use_dcn=False,
bias_init_value=None,
name=''):
super(Conv2dUnit, self).__init__()
self.input_dim = input_dim
self.filters = filters
self.filter_size = filter_size
self.stride = stride
self.bias_attr = bias_attr
self.bn = bn
self.gn = gn
self.af = af
self.groups = groups
self.act = act
self.freeze_norm = freeze_norm
self.is_test = is_test
self.norm_decay = norm_decay
self.use_dcn = use_dcn
self.bias_init_value = bias_init_value
self.name = name
def __call__(self, x):
conv_name = self.name + ".conv"
if self.use_dcn:
pass
else:
battr = None
if self.bias_attr:
initializer = None
if self.bias_init_value:
initializer = fluid.initializer.Constant(value=self.bias_init_value)
battr = ParamAttr(name=conv_name + ".bias", initializer=initializer)
x = fluid.layers.conv2d(
input=x,
num_filters=self.filters,
filter_size=self.filter_size,
stride=self.stride,
padding=(self.filter_size - 1) // 2,
act=None,
param_attr=ParamAttr(name=conv_name + ".weight"),
bias_attr=battr,
name=conv_name + '.output.1')
if self.bn:
bn_name = self.name + ".bn"
norm_lr = 0. if self.freeze_norm else 1.
norm_decay = self.norm_decay
pattr = ParamAttr(
name=bn_name + '.scale',
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
battr = ParamAttr(
name=bn_name + '.offset',
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
x = fluid.layers.batch_norm(
input=x,
name=bn_name + '.output.1',
is_test=self.is_test,
param_attr=pattr,
bias_attr=battr,
moving_mean_name=bn_name + '.mean',
moving_variance_name=bn_name + '.var')
if self.gn:
gn_name = self.name + ".gn"
norm_lr = 0. if self.freeze_norm else 1.
norm_decay = self.norm_decay
pattr = ParamAttr(
name=gn_name + '.scale',
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
battr = ParamAttr(
name=gn_name + '.offset',
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
x = fluid.layers.group_norm(
input=x,
groups=self.groups,
name=gn_name + '.output.1',
param_attr=pattr,
bias_attr=battr)
if self.af:
af_name = self.name + ".af"
norm_lr = 0. if self.freeze_norm else 1.
norm_decay = self.norm_decay
pattr = ParamAttr(
name=af_name + '.scale',
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
battr = ParamAttr(
name=af_name + '.offset',
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
scale = fluid.layers.create_parameter(
shape=[x.shape[1]],
dtype=x.dtype,
attr=pattr,
default_initializer=fluid.initializer.Constant(1.))
bias = fluid.layers.create_parameter(
shape=[x.shape[1]],
dtype=x.dtype,
attr=battr,
default_initializer=fluid.initializer.Constant(0.))
x = fluid.layers.affine_channel(x, scale=scale, bias=bias)
if self.act == 'leaky':
x = fluid.layers.leaky_relu(x, alpha=0.1)
elif self.act == 'relu':
x = fluid.layers.relu(x)
return x
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册