Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
92031968
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
92031968
编写于
9月 20, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
init vmul kernel
上级
b9acbcc8
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
169 addition
and
9 deletion
+169
-9
paddle/fluid/operators/math/jit_kernel.cc
paddle/fluid/operators/math/jit_kernel.cc
+126
-1
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+26
-6
paddle/fluid/operators/math/jit_kernel_test.cc
paddle/fluid/operators/math/jit_kernel_test.cc
+17
-2
未找到文件。
paddle/fluid/operators/math/jit_kernel.cc
浏览文件 @
92031968
...
...
@@ -16,23 +16,132 @@ limitations under the License. */
#include <functional>
#include <string>
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace
paddle
{
namespace
operators
{
namespace
math
{
namespace
jitkernel
{
namespace
jit
=
platform
::
jit
;
KernelPool
&
KernelPool
::
Instance
()
{
static
KernelPool
g_jit_kernels
;
return
g_jit_kernels
;
}
#define SEARCH_BLOCK(src, t, isa) \
if (d < AVX_FLOAT_BLOCK) { \
Compute = src<t, isa, kLT8>; \
} else if (d == AVX_FLOAT_BLOCK) { \
Compute = src<t, isa, kEQ8>; \
} else if (d == AVX512_FLOAT_BLOCK) { \
Compute = src<t, isa, kEQ16>; \
} else { \
Compute = src<t, isa, kGT16>; \
}
#define SEARCH_ISA_BLOCK(src, t) \
if (jit::MayIUse(jit::avx512_common)) { \
SEARCH_BLOCK(src, t, jit::avx512_common); \
} else if (jit::MayIUse(jit::avx2)) { \
SEARCH_BLOCK(src, t, jit::avx2); \
} else if (jit::MayIUse(jit::avx)) { \
SEARCH_BLOCK(src, t, jit::avx); \
} else { \
SEARCH_BLOCK(src, t, jit::isa_any); \
}
#define FOR_EACH_BLOCK(macro_, isa) \
macro_(isa, kLT8) macro_(isa, kEQ8) macro_(isa, kEQ16) macro_(isa, kGT16)
#define FOR_EACH_ISA_BLOCK(macro_) \
FOR_EACH_BLOCK(macro_, jit::avx512_common) \
FOR_EACH_BLOCK(macro_, jit::avx2) \
FOR_EACH_BLOCK(macro_, jit::avx) \
FOR_EACH_BLOCK(macro_, jit::any)
#define VMUL_ANY \
for (int i = 0; i < n; ++i) { \
z[i] = x[i] * y[i]; \
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
static
void
VMulCompute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
{
VMUL_ANY
}
#ifdef PADDLE_USE_MKLML
#define DEFINE_VMUL_COMPUTE_FLOAT(isa, block) \
template <> \
static void VMulCompute<float, isa, block>(const int n, const float* x, \
const float* y, float* z) { \
platform::dynload::vsMul(n, x, y, z); \
}
#define DEFINE_VMUL_COMPUTE_DOUBLE(isa, block) \
template <> \
static void VMulCompute<double, isa, block>(const int n, const double* x, \
const double* y, float* z) { \
platform::dynload::vdMul(n, x, y, z); \
}
FOR_EACH_ISA_BLOCK
(
DEFINE_VMUL_COMPUTE_FLOAT
)
FOR_EACH_ISA_BLOCK
(
DEFINE_VMUL_COMPUTE_DOUBLE
)
// TODO(TJ): add EQ8
#endif
#undef DEFINE_VMUL_COMPUTE_FLOAT
#undef DEFINE_VMUL_COMPUTE_DOUBLE
#undef VMUL_ANY
template
<
>
VMulKernel
<
float
>::
VMulKernel
(
int
d
)
{
SEARCH_ISA_BLOCK
(
VMulCompute
,
float
);
}
template
<
>
VMulKernel
<
double
>::
VMulKernel
(
int
d
)
{
SEARCH_ISA_BLOCK
(
VMulCompute
,
double
);
}
template
<
>
const
std
::
shared_ptr
<
VMulKernel
<
float
>>
KernelPool
::
Get
<
VMulKernel
<
float
>>
(
int
d
)
{
std
::
string
key
=
"f"
+
std
::
to_string
(
d
);
if
(
kers_
.
find
(
key
)
==
kers_
.
end
())
{
auto
p
=
std
::
make_shared
<
VMulKernel
<
float
>>
(
d
);
kers_
.
insert
({
key
,
std
::
dynamic_pointer_cast
<
Kernel
>
(
p
)});
return
p
;
}
return
std
::
dynamic_pointer_cast
<
VMulKernel
<
float
>>
(
kers_
.
at
(
key
));
}
template
<
>
const
std
::
shared_ptr
<
VMulKernel
<
double
>>
KernelPool
::
Get
<
VMulKernel
<
double
>>
(
int
d
)
{
std
::
string
key
=
"d"
+
std
::
to_string
(
d
);
if
(
kers_
.
find
(
key
)
==
kers_
.
end
())
{
auto
p
=
std
::
make_shared
<
VMulKernel
<
double
>>
(
d
);
kers_
.
insert
({
key
,
std
::
dynamic_pointer_cast
<
Kernel
>
(
p
)});
return
p
;
}
return
std
::
dynamic_pointer_cast
<
VMulKernel
<
double
>>
(
kers_
.
at
(
key
));
}
template
<
>
LSTMKernel
<
float
>::
LSTMKernel
(
int
d
,
const
std
::
string
&
act_gate_str
,
const
std
::
string
&
act_cand_str
,
const
std
::
string
&
act_cell_str
)
:
Kernel
(),
d_
(
d
)
{
d2_
=
d
*
2
;
d3_
=
d
*
3
;
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx512_common
))
{
math
::
VecActivations
<
float
,
platform
::
jit
::
avx512_common
>
act_functor
;
act_gate_
=
act_functor
(
act_gate_str
);
...
...
@@ -48,6 +157,22 @@ LSTMKernel<float>::LSTMKernel(int d, const std::string& act_gate_str,
act_gate_
=
act_functor
(
act_gate_str
);
act_cell_
=
act_functor
(
act_cell_str
);
act_cand_
=
act_functor
(
act_cand_str
);
// ComputeCtHt = [&](float*gates,const float*ct_1,float*ct, float*ht) {
// // gates: W_ch, W_ih, W_fh, W_oh
// act_gate(d3_, gates + d_, gates + d_);
// /* C_t = C_t-1 * fgated + cand_gated * igated */
// act_cand(d_, gates, gates);
// blas.VMUL(d_, gates, gates + d_, gates + d_);
// blas.VMUL(d_, ct_1, gates + d2_, gates + d2_);
// blas.VADD(d_, gates + d_, gates + d2_, ct);
// /* H_t = act_cell(C_t) * ogated */
// act_cell(d_, ct, gates + d2_);
// blas.VMUL(d_, gates + d2_, gates + d3_, ht)
// GET_Ct(ct_1, gates, ct);
// GET_Ht(ct, gates, ht);
// };
}
else
{
math
::
VecActivations
<
float
,
platform
::
jit
::
isa_any
>
act_functor
;
act_gate_
=
act_functor
(
act_gate_str
);
...
...
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
92031968
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <memory> // for shared_ptr
#include <string>
#include <unordered_map>
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/macros.h"
// Note: Only support on CPU yet.
...
...
@@ -25,6 +26,18 @@ namespace operators {
namespace
math
{
namespace
jitkernel
{
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define AVX_FLOAT_BLOCK 8
#define AVX_DOUBLE_BLOCK 4
#define AVX2_FLOAT_BLOCK 8
#define AVX2_DOUBLE_BLOCK 4
#define AVX512_FLOAT_BLOCK 16
#define AVX512_DOUBLE_BLOCK 8
typedef
enum
{
kLT8
,
kEQ8
,
kEQ16
,
kGT16
}
jit_block
;
class
Kernel
{
public:
Kernel
()
{}
...
...
@@ -36,7 +49,7 @@ class Kernel {
class
KernelPool
{
public:
static
KernelPool
&
Instance
();
static
KernelPool
&
Instance
();
template
<
typename
Ker
,
typename
...
ARGS
>
const
std
::
shared_ptr
<
Ker
>
Get
(
ARGS
...
args
);
...
...
@@ -48,17 +61,24 @@ class KernelPool {
DISABLE_COPY_AND_ASSIGN
(
KernelPool
);
};
template
<
typename
T
>
class
VMulKernel
:
public
Kernel
{
public:
explicit
VMulKernel
(
int
n
);
void
(
*
Compute
)(
const
int
n
,
const
T
*
,
const
T
*
,
T
*
);
};
template
<
typename
T
>
class
LSTMKernel
:
public
Kernel
{
public:
explicit
LSTMKernel
(
int
d
,
const
std
::
string
&
act_gate
,
const
std
::
string
&
act_cand
,
const
std
::
string
&
act_cell
);
explicit
LSTMKernel
(
int
d
,
const
std
::
string
&
act_gate
,
const
std
::
string
&
act_cand
,
const
std
::
string
&
act_cell
);
void
ComputeCtHt
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
);
void
ComputeCtHt_NoC0H0
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
)
;
void
(
*
jit_ker
)(
T
*
,
const
T
*
,
T
*
,
T
*
);
std
::
function
<
void
(
T
*
,
const
T
*
,
T
*
,
T
*
)
>
ComputeCtHt
,
ComputeCtHt_NoC0H0
;
private:
int
d_
;
int
d_
,
d2_
,
d3_
;
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate_
,
act_cell_
,
act_cand_
;
};
...
...
paddle/fluid/operators/math/jit_kernel_test.cc
浏览文件 @
92031968
...
...
@@ -23,10 +23,25 @@ TEST(JitKernel, pool) {
namespace
jit
=
paddle
::
operators
::
math
::
jitkernel
;
const
int
frame_size
=
4
;
std
::
string
act_gate
=
"sigmoid"
,
act_cand
=
"tanh"
,
act_cell
=
"tanh"
;
const
auto
&
t
=
const
auto
&
p1
=
jit
::
KernelPool
::
Instance
()
.
template
Get
<
jit
::
LSTMKernel
<
float
>,
int
,
const
std
::
string
&
,
const
std
::
string
&
,
const
std
::
string
&>
(
frame_size
,
act_gate
,
act_cand
,
act_cell
);
LOG
(
INFO
)
<<
t
;
const
auto
&
p2
=
jit
::
KernelPool
::
Instance
()
.
template
Get
<
jit
::
LSTMKernel
<
float
>,
int
,
const
std
::
string
&
,
const
std
::
string
&
,
const
std
::
string
&>
(
frame_size
,
act_gate
,
act_cand
,
act_cell
);
EXPECT_EQ
(
p1
,
p2
);
const
auto
&
p3
=
jit
::
KernelPool
::
Instance
().
template
Get
<
jit
::
VMulKernel
<
float
>
>
(
4
);
EXPECT_TRUE
(
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
p2
)
!=
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
p3
));
const
auto
&
p4
=
jit
::
KernelPool
::
Instance
().
template
Get
<
jit
::
VMulKernel
<
double
>
>
(
4
);
EXPECT_TRUE
(
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
p3
)
!=
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
p4
));
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录