Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
91b401d1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
91b401d1
编写于
5月 14, 2020
作者:
littletomatodonkey
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add backbone, cspresnet
上级
3275c1b4
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
339 addition
and
0 deletion
+339
-0
ppdet/modeling/backbones/cspresnet.py
ppdet/modeling/backbones/cspresnet.py
+339
-0
未找到文件。
ppdet/modeling/backbones/cspresnet.py
0 → 100644
浏览文件 @
91b401d1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
collections
import
OrderedDict
from
paddle
import
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.framework
import
Variable
from
paddle.fluid.regularizer
import
L2Decay
from
paddle.fluid.initializer
import
Constant
from
ppdet.core.workspace
import
register
,
serializable
from
numbers
import
Integral
from
.nonlocal_helper
import
add_space_nonlocal
from
.gc_block
import
add_gc_block
from
.name_adapter
import
NameAdapter
__all__
=
[
'CSPResNet'
]
@
register
@
serializable
class
CSPResNet
(
object
):
"""
CSPDarkNet, see https://arxiv.org/abs/1911.11929
Args:
depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
freeze_at (int): freeze the backbone at which stage
norm_type (str): normalization type, 'bn'/'sync_bn'/'affine_channel'
freeze_norm (bool): freeze normalization layers
norm_decay (float): weight decay for normalization layer weights
feature_maps (list): index of stages whose feature maps are returned
weight_prefix_name (str): prefix name of the weights
"""
__shared__
=
[
'norm_type'
,
'freeze_norm'
,
'weight_prefix_name'
]
def
__init__
(
self
,
depth
=
50
,
freeze_at
=
2
,
norm_type
=
'bn'
,
freeze_norm
=
True
,
norm_decay
=
0.
,
feature_maps
=
[
2
,
3
,
4
,
5
],
weight_prefix_name
=
''
):
super
(
CSPResNet
,
self
).
__init__
()
if
isinstance
(
feature_maps
,
Integral
):
feature_maps
=
[
feature_maps
]
assert
depth
in
[
50
,
101
],
\
"depth {} not in [50, 101]"
assert
0
<=
freeze_at
<=
4
,
"freeze_at should be 0, 1, 2, 3 or 4"
assert
len
(
feature_maps
)
>
0
,
"need one or more feature maps"
assert
norm_type
in
[
'bn'
,
'sync_bn'
,
'affine_channel'
]
self
.
depth
=
depth
self
.
freeze_at
=
freeze_at
self
.
norm_type
=
norm_type
self
.
norm_decay
=
norm_decay
self
.
freeze_norm
=
freeze_norm
self
.
_model_type
=
'CSPResNet'
self
.
feature_maps
=
feature_maps
self
.
depth_cfg
=
{
50
:
([
3
,
3
,
5
,
2
],
self
.
bottleneck
),
101
:
([
3
,
3
,
22
,
2
],
self
.
bottleneck
),
}
self
.
stage_filters
=
[
64
,
128
,
256
,
512
]
self
.
prefix_name
=
weight_prefix_name
self
.
end_points
=
[]
def
net
(
self
,
input
):
depth
=
self
.
depth_cfg
[
self
.
depth
][
0
]
block_func
=
self
.
depth_cfg
[
self
.
depth
][
1
]
num_filters
=
self
.
stage_filters
conv
=
self
.
_conv_norm
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'leaky'
,
name
=
"conv1"
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
)
if
block
!=
0
:
conv
=
self
.
_conv_norm
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
filter_size
=
3
,
stride
=
2
,
act
=
"leaky_relu"
,
name
=
conv_name
+
"_downsample"
)
# split
left
=
conv
right
=
conv
if
block
==
0
:
ch
=
num_filters
[
block
]
else
:
ch
=
num_filters
[
block
]
*
2
right
=
self
.
_conv_norm
(
input
=
right
,
num_filters
=
ch
,
filter_size
=
1
,
act
=
"leaky_relu"
,
name
=
conv_name
+
"_right_first_route"
)
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
right
=
self
.
bottleneck
(
input
=
right
,
num_filters
=
num_filters
[
block
],
stride
=
1
,
name
=
conv_name
)
# route
left
=
self
.
_conv_norm
(
input
=
left
,
num_filters
=
num_filters
[
block
]
*
2
,
filter_size
=
1
,
act
=
"leaky_relu"
,
name
=
conv_name
+
"_left_route"
)
right
=
self
.
_conv_norm
(
input
=
right
,
num_filters
=
num_filters
[
block
]
*
2
,
filter_size
=
1
,
act
=
"leaky_relu"
,
name
=
conv_name
+
"_right_route"
)
conv
=
fluid
.
layers
.
concat
([
left
,
right
],
axis
=
1
)
conv
=
self
.
_conv_norm
(
input
=
conv
,
num_filters
=
num_filters
[
block
]
*
2
,
filter_size
=
1
,
stride
=
1
,
act
=
"leaky_relu"
,
name
=
conv_name
+
"_merged_transition"
)
self
.
end_points
.
append
(
conv
)
return
def
_conv_norm
(
self
,
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
name
=
None
,
dcn_v2
=
False
):
_name
=
self
.
prefix_name
+
name
if
self
.
prefix_name
!=
''
else
name
lr_mult
=
1.0
if
not
dcn_v2
:
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
_name
+
"_weights"
,
learning_rate
=
lr_mult
),
bias_attr
=
False
,
name
=
_name
+
'.conv2d.output.1'
)
else
:
# select deformable conv"
offset_mask
=
self
.
_conv_offset
(
input
=
input
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
act
=
None
,
name
=
_name
+
"_conv_offset"
)
offset_channel
=
filter_size
**
2
*
2
mask_channel
=
filter_size
**
2
offset
,
mask
=
fluid
.
layers
.
split
(
input
=
offset_mask
,
num_or_sections
=
[
offset_channel
,
mask_channel
],
dim
=
1
)
mask
=
fluid
.
layers
.
sigmoid
(
mask
)
conv
=
fluid
.
layers
.
deformable_conv
(
input
=
input
,
offset
=
offset
,
mask
=
mask
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
deformable_groups
=
1
,
im2col_step
=
1
,
param_attr
=
ParamAttr
(
name
=
_name
+
"_weights"
,
learning_rate
=
lr_mult
),
bias_attr
=
False
,
name
=
_name
+
".conv2d.output.1"
)
if
name
==
"conv1"
:
bn_name
=
"bn_"
+
name
else
:
bn_name
=
"bn"
+
name
[
3
:]
bn_name
=
self
.
prefix_name
+
bn_name
if
self
.
prefix_name
!=
''
else
bn_name
norm_lr
=
0.
if
self
.
freeze_norm
else
lr_mult
norm_decay
=
self
.
norm_decay
pattr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
,
learning_rate
=
norm_lr
,
regularizer
=
L2Decay
(
norm_decay
))
battr
=
ParamAttr
(
name
=
bn_name
+
'_offset'
,
learning_rate
=
norm_lr
,
regularizer
=
L2Decay
(
norm_decay
))
if
self
.
norm_type
in
[
'bn'
,
'sync_bn'
]:
global_stats
=
True
if
self
.
freeze_norm
else
False
out
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
None
,
name
=
bn_name
+
'.output.1'
,
param_attr
=
pattr
,
bias_attr
=
battr
,
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
,
use_global_stats
=
global_stats
)
scale
=
fluid
.
framework
.
_get_var
(
pattr
.
name
)
bias
=
fluid
.
framework
.
_get_var
(
battr
.
name
)
elif
self
.
norm_type
==
'affine_channel'
:
scale
=
fluid
.
layers
.
create_parameter
(
shape
=
[
conv
.
shape
[
1
]],
dtype
=
conv
.
dtype
,
attr
=
pattr
,
default_initializer
=
fluid
.
initializer
.
Constant
(
1.
))
bias
=
fluid
.
layers
.
create_parameter
(
shape
=
[
conv
.
shape
[
1
]],
dtype
=
conv
.
dtype
,
attr
=
battr
,
default_initializer
=
fluid
.
initializer
.
Constant
(
0.
))
out
=
fluid
.
layers
.
affine_channel
(
x
=
conv
,
scale
=
scale
,
bias
=
bias
,
act
=
None
)
if
self
.
freeze_norm
:
scale
.
stop_gradient
=
True
bias
.
stop_gradient
=
True
if
act
==
"relu"
:
out
=
fluid
.
layers
.
relu
(
out
)
elif
act
==
"leaky_relu"
:
out
=
fluid
.
layers
.
leaky_relu
(
out
)
return
out
def
shortcut
(
self
,
input
,
ch_out
,
stride
,
is_first
,
name
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
or
is_first
is
True
:
return
self
.
_conv_norm
(
input
,
ch_out
,
1
,
stride
,
name
=
name
)
else
:
return
input
def
bottleneck
(
self
,
input
,
num_filters
,
stride
,
name
):
conv0
=
self
.
_conv_norm
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
"leaky_relu"
,
name
=
name
+
"_branch2a"
)
conv1
=
self
.
_conv_norm
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
"leaky_relu"
,
name
=
name
+
"_branch2b"
)
conv2
=
self
.
_conv_norm
(
input
=
conv1
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
)
short
=
self
.
shortcut
(
input
,
num_filters
*
2
,
stride
,
is_first
=
False
,
name
=
name
+
"_branch1"
)
ret
=
short
+
conv2
ret
=
fluid
.
layers
.
leaky_relu
(
ret
,
alpha
=
0.1
)
return
ret
def
__call__
(
self
,
input
):
assert
isinstance
(
input
,
Variable
)
assert
not
(
set
(
self
.
feature_maps
)
-
set
([
2
,
3
,
4
,
5
])),
\
"feature maps {} not in [2, 3, 4, 5]"
.
format
(
self
.
feature_maps
)
res_endpoints
=
[]
res
=
input
feature_maps
=
self
.
feature_maps
self
.
net
(
input
)
for
i
in
feature_maps
:
res
=
self
.
end_points
[
i
-
2
]
if
i
in
self
.
feature_maps
:
res_endpoints
.
append
(
res
)
if
self
.
freeze_at
>=
i
:
res
.
stop_gradient
=
True
return
OrderedDict
(
[(
'cspres{}_sum'
.
format
(
self
.
feature_maps
[
idx
]),
feat
)
for
idx
,
feat
in
enumerate
(
res_endpoints
)])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录