Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
91594e50
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
91594e50
编写于
6月 12, 2020
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix pisa
上级
33f02d99
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
95 addition
and
40 deletion
+95
-40
ppdet/modeling/losses/pisa_utils.py
ppdet/modeling/losses/pisa_utils.py
+24
-16
ppdet/modeling/losses/yolo_loss.py
ppdet/modeling/losses/yolo_loss.py
+71
-24
未找到文件。
ppdet/modeling/losses/pisa_utils.py
浏览文件 @
91594e50
...
@@ -20,25 +20,33 @@ import numpy as np
...
@@ -20,25 +20,33 @@ import numpy as np
__all__
=
[
'get_isr_p_func'
]
__all__
=
[
'get_isr_p_func'
]
def
get_isr_p_func
(
pos_iou_thresh
=
0.2
5
,
bias
=
0
,
k
=
2
):
def
get_isr_p_func
(
max_box_num
=
50
,
pos_iou_thresh
=
0.
5
,
bias
=
0
,
k
=
2
):
def
irs_p
(
x
):
def
irs_p
(
x
):
np
.
save
(
"data"
,
x
)
x
=
np
.
array
(
x
)
x
=
np
.
array
(
x
)
max_ious
=
x
[:,
:,
0
]
gt_label
=
x
[:,
:
max_box_num
]
gt_inds
=
x
[:,
:,
1
].
astype
(
'int32'
)
gt_score
=
x
[:,
max_box_num
:
2
*
max_box_num
]
cls
=
x
[:,
:,
2
].
astype
(
'int32'
)
remain
=
x
[:,
2
*
max_box_num
:]
pn
=
remain
.
shape
[
1
]
//
3
max_ious
=
remain
[:,
:
pn
]
gt_inds
=
remain
[:,
pn
:
2
*
pn
].
astype
(
'int32'
)
cls
=
remain
[:,
2
*
pn
:].
astype
(
'int32'
)
# # n_{max}: max gt box num in each class
pos_mask
=
max_ious
>
pos_iou_thresh
# valid_gt = gt_box[:, :, 2] > 0.
if
not
np
.
any
(
pos_mask
):
# valid_gt_label = gt_label[valid_gt]
return
np
.
zeros
([
max_ious
.
shape
[
0
],
pn
,
2
]).
astype
(
'float32'
)
# max_l_num = np.bincount(valid_gt_label).max()
cls_target
=
np
.
zeros_like
(
max_ious
)
cls_target_weights
=
np
.
zeros_like
(
max_ious
)
for
i
in
range
(
gt_label
.
shape
[
0
]):
cls_target
[
i
]
=
gt_label
[
i
,
gt_inds
[
i
]]
cls_target_weights
[
i
]
=
gt_score
[
i
,
gt_inds
[
i
]]
# cls_target *= pos_mask.astype('float32')
# divide gt index in each sample
# divide gt index in each sample
gt_inds
=
gt_inds
+
np
.
arange
(
gt_inds
.
shape
[
gt_inds
=
gt_inds
+
np
.
arange
(
gt_inds
.
shape
[
0
])[:,
np
.
newaxis
]
*
gt_inds
.
shape
[
1
]
0
])[:,
np
.
newaxis
]
*
max_box_num
all_pos_weights
=
np
.
ones_like
(
max_ious
)
all_pos_weights
=
np
.
zeros_like
(
max_ious
)
pos_mask
=
max_ious
>
pos_iou_thresh
cls
=
np
.
reshape
(
cls
,
list
(
max_ious
.
shape
)
+
[
-
1
])
cls
=
np
.
reshape
(
cls
,
list
(
max_ious
.
shape
)
+
[
-
1
])
max_ious
=
max_ious
[
pos_mask
]
max_ious
=
max_ious
[
pos_mask
]
pos_weights
=
all_pos_weights
[
pos_mask
]
pos_weights
=
all_pos_weights
[
pos_mask
]
...
@@ -58,12 +66,12 @@ def get_isr_p_func(pos_iou_thresh=0.25, bias=0, k=2):
...
@@ -58,12 +66,12 @@ def get_isr_p_func(pos_iou_thresh=0.25, bias=0, k=2):
l_max_iou_rank
=
np
.
argsort
(
-
l_max_ious
).
argsort
().
astype
(
'float32'
)
l_max_iou_rank
=
np
.
argsort
(
-
l_max_ious
).
argsort
().
astype
(
'float32'
)
weight_factor
=
np
.
clip
(
max_l_num
-
l_max_iou_rank
,
0.
,
weight_factor
=
np
.
clip
(
max_l_num
-
l_max_iou_rank
,
0.
,
None
)
/
max_l_num
None
)
/
max_l_num
weight_factor
=
np
.
power
(
bias
+
(
1
-
bias
)
*
weight_factor
,
k
)
pos_weights
[
l_inds
]
=
np
.
power
(
bias
+
(
1
-
bias
)
*
weight_factor
,
k
)
pos_weights
[
l_inds
]
*=
weight_factor
pos_weights
=
pos_weights
/
max
(
np
.
mean
(
pos_weights
),
1e-6
)
pos_weights
=
pos_weights
/
np
.
mean
(
pos_weights
)
all_pos_weights
[
pos_mask
]
=
pos_weights
all_pos_weights
[
pos_mask
]
=
pos_weights
cls_target_weights
*=
all_pos_weights
return
all_pos_weights
return
np
.
stack
([
cls_target
,
cls_target_weights
],
axis
=-
1
)
return
irs_p
return
irs_p
...
...
ppdet/modeling/losses/yolo_loss.py
浏览文件 @
91594e50
...
@@ -66,7 +66,7 @@ class YOLOv3Loss(object):
...
@@ -66,7 +66,7 @@ class YOLOv3Loss(object):
anchor_masks
,
mask_anchors
,
num_classes
,
prefix_name
):
anchor_masks
,
mask_anchors
,
num_classes
,
prefix_name
):
if
self
.
_use_fine_grained_loss
:
if
self
.
_use_fine_grained_loss
:
return
self
.
_get_fine_grained_loss
(
return
self
.
_get_fine_grained_loss
(
outputs
,
targets
,
gt_box
,
gt_label
,
self
.
_batch_size
,
outputs
,
targets
,
gt_box
,
gt_label
,
gt_score
,
self
.
_batch_size
,
num_classes
,
mask_anchors
,
self
.
_ignore_thresh
)
num_classes
,
mask_anchors
,
self
.
_ignore_thresh
)
else
:
else
:
losses
=
[]
losses
=
[]
...
@@ -93,7 +93,7 @@ class YOLOv3Loss(object):
...
@@ -93,7 +93,7 @@ class YOLOv3Loss(object):
return
{
'loss'
:
sum
(
losses
)}
return
{
'loss'
:
sum
(
losses
)}
def
_get_fine_grained_loss
(
self
,
outputs
,
targets
,
gt_box
,
gt_label
,
def
_get_fine_grained_loss
(
self
,
outputs
,
targets
,
gt_box
,
gt_label
,
batch_size
,
num_classes
,
mask_anchors
,
gt_score
,
batch_size
,
num_classes
,
mask_anchors
,
ignore_thresh
):
ignore_thresh
):
"""
"""
Calculate fine grained YOLOv3 loss
Calculate fine grained YOLOv3 loss
...
@@ -123,6 +123,7 @@ class YOLOv3Loss(object):
...
@@ -123,6 +123,7 @@ class YOLOv3Loss(object):
"YOLOv3 output layer number not equal target number"
"YOLOv3 output layer number not equal target number"
loss_xys
,
loss_whs
,
loss_objs
,
loss_clss
=
[],
[],
[],
[]
loss_xys
,
loss_whs
,
loss_objs
,
loss_clss
=
[],
[],
[],
[]
loss_carls
,
loss_isrp_clss
=
[],
[]
if
self
.
_iou_loss
is
not
None
:
if
self
.
_iou_loss
is
not
None
:
loss_ious
=
[]
loss_ious
=
[]
if
self
.
_iou_aware_loss
is
not
None
:
if
self
.
_iou_aware_loss
is
not
None
:
...
@@ -144,22 +145,54 @@ class YOLOv3Loss(object):
...
@@ -144,22 +145,54 @@ class YOLOv3Loss(object):
sorted_iou
,
sorted_gt_inds
=
fluid
.
layers
.
argsort
(
sorted_iou
,
sorted_gt_inds
=
fluid
.
layers
.
argsort
(
iou
,
axis
=-
1
,
descending
=
True
)
iou
,
axis
=-
1
,
descending
=
True
)
max_iou
=
sorted_iou
[:,
:,
0
:
1
]
max_iou
=
sorted_iou
[:,
:,
0
]
gt_inds
=
fluid
.
layers
.
cast
(
gt_inds
=
fluid
.
layers
.
cast
(
sorted_gt_inds
[:,
:,
0
:
1
],
dtype
=
'float32'
)
sorted_gt_inds
[:,
:,
0
],
dtype
=
'float32'
)
pred_cls
=
fluid
.
layers
.
argmax
(
cls
,
axis
=-
1
)
cls_score
=
fluid
.
layers
.
sigmoid
(
cls
)
pred_cls
=
fluid
.
layers
.
reshape
(
pred_cls
,
[
batch_size
,
-
1
,
1
])
sorted_cls_score
,
sorted_pred_cls
=
fluid
.
layers
.
argsort
(
cls_score
,
axis
=-
1
,
descending
=
True
)
pred_cls
=
fluid
.
layers
.
reshape
(
sorted_pred_cls
[:,
:,
:,
:,
0
],
[
batch_size
,
-
1
])
pred_cls
=
fluid
.
layers
.
cast
(
pred_cls
,
dtype
=
'float32'
)
pred_cls
=
fluid
.
layers
.
cast
(
pred_cls
,
dtype
=
'float32'
)
gt_label_fp32
=
fluid
.
layers
.
cast
(
gt_label
,
dtype
=
'float32'
)
isr_p_input
=
fluid
.
layers
.
concat
(
isr_p_input
=
fluid
.
layers
.
concat
(
[
max_iou
,
gt_inds
,
pred_cls
],
axis
=-
1
)
[
gt_label_fp32
,
gt_score
,
max_iou
,
gt_inds
,
pred_cls
],
axis
=-
1
)
isr_p
=
get_isr_p_func
()
isr_p
=
get_isr_p_func
()
pos_weights
=
fluid
.
layers
.
zeros_like
(
max_iou
)
isr_p_output
=
fluid
.
layers
.
zeros_like
(
sorted_iou
[:,
:,
:
2
]
)
fluid
.
layers
.
py_func
(
isr_p
,
isr_p_input
,
pos_weights
)
fluid
.
layers
.
py_func
(
isr_p
,
isr_p_input
,
isr_p_output
)
tobj_shape
=
fluid
.
layers
.
shape
(
tobj
)
tobj_shape
=
fluid
.
layers
.
shape
(
tobj
)
pos_weights
=
fluid
.
layers
.
reshape
(
pos_weights
,
(
isr_p_output
=
fluid
.
layers
.
reshape
(
isr_p_output
,
(
-
1
,
an_num
,
tobj_shape
[
2
],
tobj_shape
[
3
],
2
))
cls_target
=
fluid
.
layers
.
cast
(
isr_p_output
[:,
:,
:,
:,
0
:
1
],
dtype
=
'int32'
)
cls_target
=
fluid
.
layers
.
one_hot
(
cls_target
,
num_classes
)
cls_target_weights
=
isr_p_output
[:,
:,
:,
:,
1
]
cls_target_weights
.
stop_gradient
=
True
loss_isrp_cls
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
cls
,
cls_target
)
loss_isrp_cls
=
fluid
.
layers
.
elementwise_mul
(
loss_isrp_cls
,
cls_target_weights
,
axis
=
0
)
loss_isrp_cls
=
fluid
.
layers
.
reduce_sum
(
loss_isrp_cls
,
dim
=
[
1
,
2
,
3
])
bias
=
0.2
pos_cls_score
=
fluid
.
layers
.
reduce_sum
(
cls_score
*
cls_target
,
dim
=
[
-
1
])
pos_cls_score
=
fluid
.
layers
.
reshape
(
pos_cls_score
,
[
batch_size
,
-
1
,
])
pos_mask
=
fluid
.
layers
.
cast
(
sorted_iou
[:,
:,
0
]
>
0.5
,
dtype
=
'float32'
)
carl_weights
=
bias
+
(
1
-
bias
)
*
pos_cls_score
*
pos_mask
carl_weights
*=
fluid
.
layers
.
reduce_sum
(
pos_mask
)
/
fluid
.
layers
.
reduce_sum
(
carl_weights
)
carl_weights
=
fluid
.
layers
.
reshape
(
carl_weights
,
(
-
1
,
an_num
,
tobj_shape
[
2
],
tobj_shape
[
3
]))
-
1
,
an_num
,
tobj_shape
[
2
],
tobj_shape
[
3
]))
tobj
=
tobj
*
pos_weights
# isr_tobj = tobj * pos_weights
# isr_tobj = tobj * pos_weights
# loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls)
# loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls)
...
@@ -172,18 +205,26 @@ class YOLOv3Loss(object):
...
@@ -172,18 +205,26 @@ class YOLOv3Loss(object):
# new_loss_cls.stop_gradient = True
# new_loss_cls.stop_gradient = True
# pos_loss_cls_ratio = orig_loss_cls / new_loss_cls
# pos_loss_cls_ratio = orig_loss_cls / new_loss_cls
tscale_tobj
=
tscale
*
tobj
loss_x
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
,
loss_x
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
tx
)
*
tscale
x
,
tx
)
*
tscale_tobj
loss_y
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
y
,
loss_x
=
fluid
.
layers
.
reduce_sum
(
loss_x
,
dim
=
[
1
,
2
,
3
])
ty
)
*
tscale
loss_y
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
loss_xy
=
loss_x
+
loss_y
y
,
ty
)
*
tscale_tobj
loss_y
=
fluid
.
layers
.
reduce_sum
(
loss_y
,
dim
=
[
1
,
2
,
3
])
# NOTE: we refined loss function of (w, h) as L1Loss
# NOTE: we refined loss function of (w, h) as L1Loss
loss_w
=
fluid
.
layers
.
abs
(
w
-
tw
)
*
tscale_tobj
loss_w
=
fluid
.
layers
.
abs
(
w
-
tw
)
*
tscale
loss_w
=
fluid
.
layers
.
reduce_sum
(
loss_w
,
dim
=
[
1
,
2
,
3
])
loss_h
=
fluid
.
layers
.
abs
(
h
-
th
)
*
tscale
loss_h
=
fluid
.
layers
.
abs
(
h
-
th
)
*
tscale_tobj
loss_wh
=
loss_w
+
loss_h
loss_h
=
fluid
.
layers
.
reduce_sum
(
loss_h
,
dim
=
[
1
,
2
,
3
])
loss_carl
=
(
loss_xy
+
loss_wh
)
*
carl_weights
loss_carl
=
fluid
.
layers
.
reduce_sum
(
loss_carl
,
dim
=
[
1
,
2
,
3
])
# loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3])
# loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3])
# loss_w = fluid.layers.reduce_sum(loss_w, dim=[1, 2, 3])
# loss_h = fluid.layers.reduce_sum(loss_h, dim=[1, 2, 3])
loss_xy
=
fluid
.
layers
.
reduce_sum
(
loss_xy
*
tobj
,
dim
=
[
1
,
2
,
3
])
loss_wh
=
fluid
.
layers
.
reduce_sum
(
loss_wh
*
tobj
,
dim
=
[
1
,
2
,
3
])
if
self
.
_iou_loss
is
not
None
:
if
self
.
_iou_loss
is
not
None
:
loss_iou
=
self
.
_iou_loss
(
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
loss_iou
=
self
.
_iou_loss
(
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
downsample
,
self
.
_batch_size
)
downsample
,
self
.
_batch_size
)
...
@@ -200,6 +241,8 @@ class YOLOv3Loss(object):
...
@@ -200,6 +241,8 @@ class YOLOv3Loss(object):
loss_iou_aware
,
dim
=
[
1
,
2
,
3
])
loss_iou_aware
,
dim
=
[
1
,
2
,
3
])
loss_iou_awares
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_iou_aware
))
loss_iou_awares
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_iou_aware
))
# tobj = tobj * pos_weights
loss_obj_pos
,
loss_obj_neg
=
self
.
_calc_obj_loss
(
loss_obj_pos
,
loss_obj_neg
=
self
.
_calc_obj_loss
(
output
,
obj
,
tobj
,
iou
,
an_num
,
self
.
_ignore_thresh
,
scale_x_y
)
output
,
obj
,
tobj
,
iou
,
an_num
,
self
.
_ignore_thresh
,
scale_x_y
)
...
@@ -207,8 +250,10 @@ class YOLOv3Loss(object):
...
@@ -207,8 +250,10 @@ class YOLOv3Loss(object):
loss_cls
=
fluid
.
layers
.
elementwise_mul
(
loss_cls
,
tobj
,
axis
=
0
)
loss_cls
=
fluid
.
layers
.
elementwise_mul
(
loss_cls
,
tobj
,
axis
=
0
)
loss_cls
=
fluid
.
layers
.
reduce_sum
(
loss_cls
,
dim
=
[
1
,
2
,
3
,
4
])
loss_cls
=
fluid
.
layers
.
reduce_sum
(
loss_cls
,
dim
=
[
1
,
2
,
3
,
4
])
loss_xys
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_x
+
loss_y
))
loss_xys
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_xy
))
loss_whs
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_w
+
loss_h
))
loss_whs
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_wh
))
loss_isrp_clss
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_isrp_cls
))
loss_carls
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_carl
))
loss_objs
.
append
(
loss_objs
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_obj_pos
+
loss_obj_neg
))
fluid
.
layers
.
reduce_mean
(
loss_obj_pos
+
loss_obj_neg
))
loss_clss
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_cls
))
loss_clss
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_cls
))
...
@@ -216,6 +261,8 @@ class YOLOv3Loss(object):
...
@@ -216,6 +261,8 @@ class YOLOv3Loss(object):
losses_all
=
{
losses_all
=
{
"loss_xy"
:
fluid
.
layers
.
sum
(
loss_xys
),
"loss_xy"
:
fluid
.
layers
.
sum
(
loss_xys
),
"loss_wh"
:
fluid
.
layers
.
sum
(
loss_whs
),
"loss_wh"
:
fluid
.
layers
.
sum
(
loss_whs
),
"loss_isrp_cls"
:
fluid
.
layers
.
sum
(
loss_isrp_clss
),
"loss_carl"
:
fluid
.
layers
.
sum
(
loss_carls
),
"loss_obj"
:
fluid
.
layers
.
sum
(
loss_objs
),
"loss_obj"
:
fluid
.
layers
.
sum
(
loss_objs
),
"loss_cls"
:
fluid
.
layers
.
sum
(
loss_clss
),
"loss_cls"
:
fluid
.
layers
.
sum
(
loss_clss
),
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录