提交 91278404 编写于 作者: W wanghaox

Merge branch 'sweetsky0901-my_maxout_op' into develop

......@@ -96,7 +96,7 @@ function(op_library TARGET)
# It's enough to just adding one operator to pybind
file(APPEND ${pybind_file} "USE_GPU_ONLY_OP(ncclAllReduce);\n")
endif()
# reduce_op contains several operators
if ("${TARGET}" STREQUAL "reduce_op")
set(pybind_flag 1)
......@@ -138,6 +138,7 @@ set(DEPS_OPS
softmax_with_cross_entropy_op
sum_op
pool_op
maxout_op
pool_with_index_op
nccl_op
sequence_conv_op
......@@ -149,6 +150,7 @@ op_library(cross_entropy_op DEPS cross_entropy)
op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax)
op_library(sum_op DEPS net_op selected_rows_functor)
op_library(pool_op DEPS pooling)
op_library(maxout_op DEPS maxouting)
op_library(pool_with_index_op DEPS pooling)
op_library(lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table)
if(WITH_GPU)
......
......@@ -12,6 +12,7 @@ if(WITH_GPU)
nv_library(context_project SRCS context_project.cc context_project.cu DEPS device_context)
nv_library(sequence2batch SRCS sequence2batch.cc sequence2batch.cu DEPS device_context)
nv_library(lstm_compute SRCS lstm_compute.cc lstm_compute.cu DEPS device_context activation_functions)
nv_library(maxouting SRCS maxouting.cc maxouting.cu DEPS device_context)
else()
cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context operator)
cc_library(selected_rows_functor SRCS selected_rows_functor.cc DEPS selected_rows math_function)
......@@ -22,6 +23,7 @@ else()
cc_library(context_project SRCS context_project.cc DEPS device_context)
cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context)
cc_library(lstm_compute SRCS lstm_compute.cc DEPS device_context activation_functions)
cc_library(maxouting SRCS maxouting.cc DEPS device_context)
endif()
cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/maxouting.h"
namespace paddle {
namespace operators {
namespace math {
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template <typename MaxOutProcess, typename T>
class MaxOutFunctor<platform::CPUPlace, MaxOutProcess, T> {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output,
int groups, int num_channels, MaxOutProcess maxout_process) {
const int batch_size = input.dims()[0];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
const int output_channels = num_channels/groups;
int fea_size = input_height * input_width;
int c_size = fea_size * output_channels;
const T* input_data = input.data<T>();
T* output_data = output.mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) {
int new_bindex = c_size * i;
for (int c = 0; c < output_channels; ++c) {
int new_cindex = fea_size * c;
for (int f = 0; f < fea_size; f++) {
T ele = maxout_process.initial();
for (int ph = 0; ph < groups; ++ph) {
maxout_process.compute(ele,
input_data[(new_bindex+new_cindex) * groups+ph*fea_size+f]);
}
maxout_process.finalize(ele, (static_cast<T>(groups)));
output_data[(new_bindex+new_cindex+f)] = ele;
}
}
}
}
};
template <class T>
class MaxOutGradFunctor<platform::CPUPlace, T> {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input,
framework::Tensor& input_grad,
const framework::Tensor& output,
const framework::Tensor& output_grad,
int groups, int num_channels) {
const int batch_size = input.dims()[0];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
const int output_channels = num_channels / groups;
int fea_size = input_height * input_width;
const T* input_data = input.data<T>();
const T* output_data = output.data<T>();
const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) {
int blen = fea_size * output_channels * i;
for (int c = 0; c < output_channels; ++c) {
int clen = fea_size * c;
for (int f = 0; f < fea_size; f++) {
int input_idx = 0;
bool stop = false;
int output_idx = blen + clen + f;
for (int g = 0; g < groups && !stop; g++) {
input_idx = (blen + clen) * groups + fea_size * g + f;
input_grad_data[input_idx] = 0;
if (input_data[input_idx] == output_data[output_idx]) {
input_grad_data[input_idx] += output_grad_data[output_idx];
stop = true;
} else {
input_grad_data[input_idx] = 0;
}
}
}
}
}
}
};
template class MaxOutGradFunctor<platform::CPUPlace, float>;
template class MaxOutGradFunctor<platform::CPUPlace, double>;
template class MaxOutFunctor<platform::CPUPlace,
paddle::operators::math::MaxOut<float>, float>;
template class MaxOutFunctor<platform::CPUPlace,
paddle::operators::math::MaxOut<double>, double>;
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/maxouting.h"
#include "paddle/platform/cuda_helper.h"
namespace paddle {
namespace operators {
namespace math {
template <typename MaxOutProcess, typename T>
__global__ void KernelMaxOut(const int nthreads, const T* input_data,
T* output_data, const int channels,
const int input_height, const int input_width,
int groups, MaxOutProcess maxout_process) {
int size = input_height * input_width * channels / groups;
int featLen = input_height * input_width;
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
index += blockDim.x * gridDim.x) {
int batch_idx = index / size;
int i = index % size;
int channel_idx = i / featLen;
int feat_idx = i % featLen;
int data_idx =
(batch_idx * size + channel_idx * featLen) * groups + feat_idx;
T ele = maxout_process.initial();
for (int g = 0; g < groups; g++) {
maxout_process.compute(ele, input_data[data_idx + g * featLen]);
}
maxout_process.finalize(ele, (static_cast<T>(groups)));
output_data[index] = ele;
}
}
template <typename T>
__global__ void KernelMaxoutGrad(
const int nthreads, const T* input_data, const T* output_data,
const T* output_grad, T* input_grad, const int channels,
const int input_height, const int input_width, int groups) {
int size = input_height * input_width * channels / groups;
int featLen = input_height * input_width;
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
index += blockDim.x * gridDim.x) {
int batch_idx = index / size;
int i = index % size;
int channel_idx = i / featLen;
int feat_idx = i % featLen;
int data_idx =
(batch_idx * size + channel_idx * featLen) * groups + feat_idx;
int maxIndex = -1;
bool stop = false;
for (int g = 0; g < groups && !stop; g++) {
if (input_data[data_idx + g * featLen] == output_data[index]) {
maxIndex = data_idx + g * featLen;
stop = true;
}
}
if (maxIndex != -1) {
// atomic add
platform::CudaAtomicAdd(input_grad + maxIndex, output_grad[index]);
}
}
}
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template <typename MaxOutProcess, typename T>
class MaxOutFunctor<platform::GPUPlace, MaxOutProcess, T> {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output,
int groups, int num_channels,
MaxOutProcess maxout_process) {
const int batch_size = input.dims()[0];
const int input_channels = input.dims()[1];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
const int output_channels = num_channels / groups;
const int output_height = output.dims()[2];
const int output_width = output.dims()[3];
const T* input_data = input.data<T>();
T* output_data = output.mutable_data<T>(context.GetPlace());
int nthreads = batch_size * output_channels * output_height * output_width;
int blocks = (nthreads + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
KernelMaxOut<
MaxOutProcess,
T><<<grid, threads, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.stream()>>>(nthreads, input_data, output_data, input_channels,
input_height, input_width, groups,
maxout_process);
}
};
/*
* All tensors are in NCHW format.
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template <typename T>
class MaxOutGradFunctor<platform::GPUPlace, T> {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& input_grad,
const framework::Tensor& output,
const framework::Tensor& output_grad,
int groups, int num_channels) {
const int batch_size = input.dims()[0];
const int input_channels = input.dims()[1];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
const int output_channels = output.dims()[1];
const int output_height = output.dims()[2];
const int output_width = output.dims()[3];
const T* input_data = input.data<T>();
const T* output_data = output.data<T>();
const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
int nthreads = batch_size * output_channels * output_height * output_width;
int blocks = (nthreads + 1024 - 1) / 1024;
dim3 threads(1024, 1);
dim3 grid(blocks, 1);
KernelMaxoutGrad<
T><<<grid, threads, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.stream()>>>(
nthreads, input_data, output_data, output_grad_data, input_grad_data,
input_channels, input_height, input_width, groups);
}
};
template class MaxOutGradFunctor<platform::GPUPlace, float>;
template class MaxOutGradFunctor<platform::GPUPlace, double>;
template class MaxOutFunctor<platform::GPUPlace,
paddle::operators::math::MaxOut<float>, float>;
template class MaxOutFunctor<platform::GPUPlace,
paddle::operators::math::MaxOut<double>, double>;
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/hostdevice.h"
namespace paddle {
namespace operators {
namespace math {
#define FLT_MAX \
__FLT_MAX__ // It might need to be placed in another file, but I'm still
// wondering where to put it.
/*
* \brief Extracting simple operations from pooling.
* Both MaxPool and AvgPool need "initial", "compute" and "finalize"
* operation.
* MaxPool initializes temp variable to the negative maximum to find the
* maximum value in the pooling field.
* AvgPool initializes temp variable to the zero to accumulate all values
* in pool pooling, and finally takes the average.
* MaxPoolGrad and AvgPoolGrad are gradient operations respectively.
*/
template <class T>
class MaxOut {
public:
DEVICE inline T initial() { return static_cast<T>(-FLT_MAX); }
DEVICE inline void compute(T& y, const T& x) { y = y > x ? y : x; }
DEVICE inline void finalize(T& y, const T& group) {}
};
template <class T>
class MaxOutGrad {
public:
DEVICE inline void compute(const T& x, const T& y, const T& dy, T& dx,
T scale) {
dx += dy * (x == y);
}
};
/*
* \brief Getting pooling results, and calculating gradient.
*
* In pool2d, all tensors are in NCHW format. Where N is batch size, C is the
* number of channels, H and W is the height and width of feature.
* In pool3d, all tensors are in NCDHW format. Where N is batch size, C is the
* number of channels, D, H and W is the depth, height and width of feature.
*
* In max pooling, it is possible that the pooling region has multiple maximum
* elements. In this case, we should compute the gradient of the first maximum
* element.
* This is different from average pooling. So we rewrite the max_pool_grad:
* MaxPool2dGradFunctor, MaxPool3dGradFunctor.
*/
template <typename Place, typename MaxOutProcess, typename T>
class MaxOutFunctor {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output,
int groups, int num_channels, MaxOutProcess maxout_compute);
};
template <typename Place, class T>
class MaxOutGradFunctor {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input,
framework::Tensor& input_grad,
const framework::Tensor& output,
const framework::Tensor& output_grad, int groups,
int num_channels);
};
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/operators/maxout_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
/********first define ProtoMaker类 ***************/
class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MaxOutOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature.");
AddOutput("Out",
"(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCHW."
"Where N is batch size, C is "
"the number of channels, H and W is the height and "
"width of feature.");
AddAttr<int>(
"groups",
R"DOC(The group number of input layer.
)DOC")
.SetDefault(2);
AddAttr<int>(
"num_channels",
R"DOC(The channel number of input layer.
)DOC")
.SetDefault(0);
AddComment(R"DOC(A layer to do max out on conv layer output.
- Input: output of a conv layer.
- Output: feature map size same as input. Channel is (input channel) / groups.
So groups should be larger than 1, and the num of channels should be able
to devided by groups.
)DOC");
}
};
/******************2nd **********************************/
class MaxOutOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of maxoutOp"
"should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of maxoutOp should not be null.");
auto in_x_dims = ctx->GetInputDim("X");
int groups = ctx->Attrs().Get<int>("groups");
int num_channels = ctx->Attrs().Get<int>("num_channels");
// check groups > 1
PADDLE_ENFORCE_GT(
groups, 1,
"in maxoutop groups should be larger than 1");
// check num_channels%groups=0
PADDLE_ENFORCE_EQ(num_channels % groups, 0,
"the num of channels should be able"
"to devided by groups");
int out_num_channels = num_channels / groups;
std::vector<int64_t> output_shape({in_x_dims[0], out_num_channels});
output_shape.push_back(in_x_dims[2]);
output_shape.push_back(in_x_dims[3]);
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}
};
class MaxOutOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Input(X@GRAD) should not be null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(maxout, ops::MaxOutOp, ops::MaxOutOpMaker, maxout_grad,
ops::MaxOutOpGrad);
REGISTER_OP_CPU_KERNEL(maxout, ops::MaxOutKernel<paddle::platform::CPUPlace,
float>);
REGISTER_OP_CPU_KERNEL(maxout_grad,
ops::MaxOutGradKernel<paddle::platform::CPUPlace,
float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/maxout_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(maxout, ops::MaxOutKernel<paddle::platform::GPUPlace,
float>);
REGISTER_OP_GPU_KERNEL(maxout_grad,
ops::MaxOutGradKernel<paddle::platform::GPUPlace,
float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/maxouting.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename Place, typename T>
class MaxOutKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* in_x = context.Input<Tensor>("X");
Tensor* out = context.Output<Tensor>("Out");
int groups = context.template Attr<int>("groups");
int num_channels = context.template Attr<int>("num_channels");
paddle::operators::math::MaxOutFunctor<
Place, paddle::operators::math::MaxOut<T>, T>
maxout_forward;
paddle::operators::math::MaxOut<T> maxout_process;
maxout_forward(context.device_context(), *in_x, *out, groups, num_channels,
maxout_process);
}
};
template <typename Place, typename T>
class MaxOutGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* in_x = context.Input<Tensor>("X");
const Tensor* out = context.Input<Tensor>("Out");
const Tensor* out_grad =
context.Input<Tensor>(framework::GradVarName("Out"));
Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
int groups = context.template Attr<int>("groups");
int num_channels = context.template Attr<int>("num_channels");
if (in_x_grad) {
in_x_grad->mutable_data<T>(context.GetPlace());
auto temp = framework::EigenVector<T>::Flatten(*in_x_grad);
temp.device(context.GetEigenDevice<Place>()) =
temp.constant(static_cast<T>(0));
paddle::operators::math::MaxOutGradFunctor<Place, T>
maxout_backward;
maxout_backward(context.device_context(), *in_x, *in_x_grad, *out,
*out_grad, groups, num_channels);
}
}
};
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
from op_test import OpTest
def maxout_forward_naive_2sweetsky(input, groups, num_channels):
s0, s1, s2, s3 = input.shape
return np.ndarray([s0, s1 / groups, groups, s2, s3], \
buffer = input, dtype=input.dtype).max(axis=(2))
def maxout_forward_naive(input, groups,num_channels):
s0, s1, s2, s3 = input.shape
return np.ndarray([s0, s1 / groups, groups, s2, s3], \
buffer = input, dtype=input.dtype).max(axis=(2))
class TestMaxOut_Op(OpTest):
def setUp(self):
self.op_type = "maxout"
self.init_test_case()
input = np.random.random(self.shape).astype("float32")
output = self.MaxOut_forward_naive(input, self.groups,
self.num_channels).astype("float32")
self.inputs = {'X': input}
self.attrs = {'groups': self.groups, 'num_channels': self.num_channels}
self.outputs = {'Out': output.astype('float32')}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
print self.inputs
print self.outputs
self.check_grad(['X'], 'Out', max_relative_error=0.5)
def init_test_case(self):
self.MaxOut_forward_naive = maxout_forward_naive
self.shape = [100, 6, 2, 2]
self.groups=2
self.num_channels=6
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册