Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
90ebce9e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
90ebce9e
编写于
6月 10, 2019
作者:
B
bingyanghuang
提交者:
Tao Luo
6月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
QAT int8 MKL-DNN transformation pass (#17819)
上级
377f9e61
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
425 addition
and
0 deletion
+425
-0
python/paddle/fluid/contrib/slim/quantization/__init__.py
python/paddle/fluid/contrib/slim/quantization/__init__.py
+3
-0
python/paddle/fluid/contrib/slim/quantization/quantization_mkldnn_pass.py
...uid/contrib/slim/quantization/quantization_mkldnn_pass.py
+229
-0
python/paddle/fluid/contrib/slim/tests/test_quantization_mkldnn_pass.py
...fluid/contrib/slim/tests/test_quantization_mkldnn_pass.py
+193
-0
未找到文件。
python/paddle/fluid/contrib/slim/quantization/__init__.py
浏览文件 @
90ebce9e
...
...
@@ -20,6 +20,9 @@ from . import quantization_strategy
from
.quantization_strategy
import
*
from
.
import
mkldnn_post_training_strategy
from
.mkldnn_post_training_strategy
import
*
from
.
import
quantization_mkldnn_pass
from
.quantization_mkldnn_pass
import
*
__all__
=
quantization_pass
.
__all__
+
quantization_strategy
.
__all__
__all__
+=
mkldnn_post_training_strategy
.
__all__
__all__
+=
quantization_mkldnn_pass
.
__all__
python/paddle/fluid/contrib/slim/quantization/quantization_mkldnn_pass.py
0 → 100644
浏览文件 @
90ebce9e
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
from
....
import
core
from
....framework
import
IrGraph
from
....framework
import
IrNode
__all__
=
[
'TransformForMkldnnPass'
]
class
TransformForMkldnnPass
(
object
):
"""
Convert QuantizationFreezePass generated IrGraph to MKL-DNN supported INT8
IrGraph. Following transformations did in this pass:
1. Convert int8 range weights with float32 data type, which are generated by
the QuantizationFreezePass, to float32 range weights with float32 data type
by using the corresponding scales. This conversion is because MKL-DNN INT8
conv2d kernel now only supports float32 weights input, will do weights
quantization inside the conv2d kernel.
2. Create the new conv2d op with the converted weights and link its output
to fake_dequantize_abs_max op's output and set conv2d's attribute "force_fp32
_output" as true
3. Transform fake_quantize_xx op to quantize op
4. Remove fake_dequantize_abs_max op
"""
def
__init__
(
self
,
scope
=
None
,
place
=
None
):
"""
Args:
scope(fluid.Scope): scope is used to initialize the new parameters.
place(fluid.CPUPlace): place is used to initialize the new parameters.
Examples:
.. code-block:: python
# The original graph will be rewrite.
import paddle.fluid as fluid
from paddle.fluid.contrib.slim.quantization
\
import TransformForMkldnnPass
from paddle.fluid.framework import IrGraph
from paddle.fluid import core
graph = IrGraph(core.Graph(fluid.Program().desc), for_test=False)
place = fluid.CPUPlace()
mkldnn_pass = TransformForMkldnnPass(fluid.global_scope(),
place)
mkldnn_pass.apply(graph)
"""
self
.
_scope
=
scope
self
.
_place
=
place
self
.
quantize_type
=
[
'fake_quantize_moving_average_abs_max'
,
'fake_quantize_range_abs_max'
]
self
.
dequantize_type
=
[
'fake_dequantize_max_abs'
]
self
.
_quantizable_ops
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
self
.
_conv_ops
=
[
'conv2d'
,
'depthwise_conv2d'
]
self
.
InScale
=
{}
self
.
max_range
=
{}
self
.
conv_new_output
=
{}
self
.
s8_max
=
127
# Temporary code for keeping the mul op as fake quantization
#TODO Intel: Remove the following code when mul int8 mkldnn
# kernel enabled
self
.
mul_input_id
=
[]
self
.
mul_output_id
=
[]
def
apply
(
self
,
graph
):
"""
Quantize the graph for running MKL-DNN INT8 inference. According
to activation quantization type, the graph will transform fake
quantize ops to quantize ops and remove the fake dequantize ops.
Args:
graph(IrGraph): the applied graph.
"""
assert
isinstance
(
graph
,
IrGraph
),
'graph must be the instance of IrGraph.'
ops
=
graph
.
all_op_nodes
()
persistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_nodes
()]
# Collect the InScales and max_range to calculate the new scales for MKL-DNN
# INT8 conv2d
for
op_node
in
ops
:
if
op_node
.
name
()
in
self
.
dequantize_type
:
input_name
=
op_node
.
input
(
"X"
)[
0
]
scale_name
=
op_node
.
input
(
"Scale"
)[
0
]
self
.
InScale
[
input_name
]
=
self
.
_load_param
(
self
.
_scope
,
scale_name
)[
0
]
self
.
max_range
[
input_name
]
=
op_node
.
op
().
attr
(
"max_range"
)
self
.
conv_new_output
[
input_name
]
=
op_node
.
output
(
"Out"
)[
0
]
# Temporary graph transform on keeping the mul op
# TODO Intel: Remove following code
elif
op_node
.
name
()
in
[
'mul'
]:
input_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
op_node
.
input
(
'X'
)[
0
])
output_node
=
graph
.
_find_node_by_name
(
op_node
.
outputs
,
op_node
.
output
(
'Out'
)[
0
])
self
.
mul_input_id
.
append
(
input_node
.
id
())
self
.
mul_output_id
.
append
(
output_node
.
id
())
for
op_node
in
ops
:
if
op_node
.
name
()
in
self
.
_conv_ops
:
self
.
_transform_to_conv_mkldnn
(
graph
,
op_node
)
elif
op_node
.
name
()
in
self
.
quantize_type
:
self
.
_transform_to_quantize_mkldnn
(
graph
,
op_node
)
elif
op_node
.
name
()
in
self
.
dequantize_type
:
self
.
_remove_fake_dequantize_op
(
graph
,
op_node
)
self
.
_remove_unused_var_nodes
(
graph
)
return
graph
def
_transform_to_conv_mkldnn
(
self
,
graph
,
op_node
):
weight_name
=
op_node
.
input
(
"Filter"
)[
0
]
output_name
=
op_node
.
output
(
"Output"
)[
0
]
# Convert int8 range weights to fp32 range weights
weight
=
self
.
_load_param
(
self
.
_scope
,
weight_name
)
w_fp32
=
np
.
divide
(
np
.
multiply
(
weight
,
127
),
self
.
max_range
[
output_name
])
w_fp32
=
w_fp32
.
reshape
(
weight
.
shape
)
self
.
_restore_var
(
weight_name
,
w_fp32
)
input_var_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
op_node
.
input
(
"Input"
)[
0
])
weight_var_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
weight_name
)
# Set fake_dequantize_abs_max's output as new output of conv2d
output_var_node
=
graph
.
_find_node_by_name
(
graph
.
all_var_nodes
(),
self
.
conv_new_output
[
output_name
])
attrs
=
{
name
:
op_node
.
op
().
attr
(
name
)
for
name
in
op_node
.
op
().
attr_names
()
}
conv_op_node
=
graph
.
create_op_node
(
op_type
=
'conv2d'
,
attrs
=
attrs
,
inputs
=
{
'Input'
:
input_var_node
,
'Filter'
:
weight_var_node
},
outputs
=
{
'Output'
:
output_var_node
})
# Based on the QAT's scales to calculate the scales of MKL-DNN INT8 conv2d
scale_in
=
self
.
s8_max
/
self
.
InScale
[
output_name
]
scale_w
=
[]
scale_w
.
append
(
self
.
max_range
[
output_name
]
/
self
.
s8_max
)
conv_op_node
.
set_attr
(
"Scale_weights"
,
scale_w
)
conv_op_node
.
set_attr
(
"Scale_in"
,
scale_in
)
conv_op_node
.
set_attr
(
"Scale_out"
,
1.0
)
conv_op_node
.
set_attr
(
"use_mkldnn"
,
1
)
conv_op_node
.
set_attr
(
"force_fp32_output"
,
1
)
graph
.
link_to
(
input_var_node
,
conv_op_node
)
graph
.
link_to
(
weight_var_node
,
conv_op_node
)
graph
.
link_to
(
conv_op_node
,
output_var_node
)
graph
.
safe_remove_nodes
(
op_node
)
def
_transform_to_quantize_mkldnn
(
self
,
graph
,
op_node
):
"""
Transform fake_quantize_xx op to quantize mkldnn op in the graph.
"""
input_var_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
op_node
.
input
(
"X"
)[
0
])
output_var_node
=
graph
.
_find_node_by_name
(
op_node
.
outputs
,
op_node
.
output
(
"Out"
)[
0
])
if
output_var_node
.
id
()
in
self
.
mul_input_id
:
return
else
:
scale_in
=
self
.
s8_max
/
self
.
_load_param
(
self
.
_scope
,
op_node
.
input
(
"InScale"
)[
0
])[
0
]
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'quantize'
,
attrs
=
{
'data_format'
:
'MKLDNNLAYOUT'
,
'use_mkldnn'
:
1
,
'Scale'
:
scale_in
,
'is_negative_input'
:
1
},
inputs
=
{
'Input'
:
input_var_node
},
outputs
=
{
'Output'
:
output_var_node
})
graph
.
link_to
(
input_var_node
,
quant_op_node
)
graph
.
link_to
(
quant_op_node
,
output_var_node
)
graph
.
safe_remove_nodes
(
op_node
)
def
_remove_fake_dequantize_op
(
self
,
graph
,
op_node
):
input_var_node
=
graph
.
_find_node_by_name
(
op_node
.
inputs
,
op_node
.
input
(
"X"
)[
0
])
if
input_var_node
.
id
()
in
self
.
mul_output_id
:
return
else
:
graph
.
safe_remove_nodes
(
op_node
)
def
_load_param
(
self
,
scope
,
param_name
):
return
np
.
array
(
scope
.
find_var
(
param_name
).
get_tensor
())
def
_restore_var
(
self
,
name
,
array
):
tensor
=
self
.
_scope
.
find_var
(
name
).
get_tensor
()
tensor
.
set
(
array
,
self
.
_place
)
def
_remove_unused_var_nodes
(
self
,
graph
):
all_used_vars
=
set
()
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
for
input_node
in
op_node
.
inputs
:
all_used_vars
.
add
(
input_node
)
for
output_node
in
op_node
.
outputs
:
all_used_vars
.
add
(
output_node
)
all_used_vars
=
{
n
.
node
for
n
in
all_used_vars
}
all_unused_vars
=
{
n
for
n
in
filter
(
lambda
node
:
node
.
node
not
in
all_used_vars
,
graph
.
all_var_nodes
())
}
graph
.
safe_remove_nodes
(
all_unused_vars
)
python/paddle/fluid/contrib/slim/tests/test_quantization_mkldnn_pass.py
0 → 100644
浏览文件 @
90ebce9e
# copyright (c) 2019 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
os
import
unittest
import
random
import
numpy
as
np
import
paddle.fluid
as
fluid
import
six
import
paddle
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid.contrib.slim.quantization
import
QuantizationFreezePass
from
paddle.fluid.contrib.slim.quantization
import
QuantizationTransformPass
from
paddle.fluid.contrib.slim.quantization
import
TransformForMkldnnPass
from
paddle.fluid
import
core
os
.
environ
[
"CPU_NUM"
]
=
"1"
def
conv_net
(
img
,
label
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
img
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_1
=
fluid
.
layers
.
batch_norm
(
conv_pool_1
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
class
TestMKLDNNTransformBasedFreezePass
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
quantizable_op_and_inputs
=
{
'conv2d'
:
[
'Input'
,
'Filter'
],
'depthwise_conv2d'
:
[
'Input'
,
'Filter'
],
# Mul int8 op is under internal test
# TODO Update this when mul op is merged
#'mul': ['X', 'Y']
}
def
check_program
(
self
,
program
):
for
block
in
program
.
blocks
:
for
op
in
block
.
ops
:
if
op
.
type
in
self
.
quantizable_op_and_inputs
:
for
arg_name
in
op
.
output_arg_names
:
# Check quantizable op's output is linked to
# fake_dequantize's output
self
.
assertTrue
(
arg_name
.
endswith
(
'.dequantized'
))
def
isinteger
(
self
,
x
):
return
np
.
equal
(
np
.
mod
(
x
,
1
),
0
)
def
build_program
(
self
,
main
,
startup
,
is_test
,
seed
):
main
.
random_seed
=
seed
startup
.
random_seed
=
seed
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
loss
=
conv_net
(
img
,
label
)
if
not
is_test
:
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
opt
.
minimize
(
loss
)
return
[
img
,
label
],
loss
def
mkldnn_based_freeze_graph
(
self
,
use_cuda
,
seed
,
activation_quant_type
,
weight_quant_type
=
'abs_max'
,
for_ci
=
False
):
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
feeds
,
loss
=
self
.
build_program
(
main
,
startup
,
False
,
seed
)
self
.
build_program
(
test_program
,
startup
,
True
,
seed
)
test_program
=
test_program
.
clone
(
for_test
=
True
)
main_graph
=
IrGraph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
test_graph
=
IrGraph
(
core
.
Graph
(
test_program
.
desc
),
for_test
=
True
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
startup
)
# Apply the QAT QuantizationTransformPass
transform_pass
=
QuantizationTransformPass
(
scope
=
scope
,
place
=
place
,
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quant_type
)
transform_pass
.
apply
(
main_graph
)
transform_pass
.
apply
(
test_graph
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
memory_optimize
=
False
build_strategy
.
enable_inplace
=
False
binary
=
fluid
.
CompiledProgram
(
main_graph
.
graph
).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
)
quantized_test_program
=
test_graph
.
to_program
()
iters
=
5
batch_size
=
8
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feeds
,
place
=
place
)
# Training the model to get the weights value
with
fluid
.
scope_guard
(
scope
):
for
_
in
range
(
iters
):
data
=
next
(
train_reader
())
loss_v
=
exe
.
run
(
binary
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
# Freeze graph for inference, but the weight of fc/conv is still float type.
freeze_pass
=
QuantizationFreezePass
(
scope
=
scope
,
place
=
place
,
weight_quantize_type
=
weight_quant_type
)
freeze_pass
.
apply
(
test_graph
)
# Transform quantized graph for MKL-DNN INT8 inference
mkldnn_int8_pass
=
TransformForMkldnnPass
(
scope
=
scope
,
place
=
place
)
mkldnn_int8_pass
.
apply
(
test_graph
)
dev_name
=
'_cpu_'
if
not
for_ci
:
marked_nodes
=
set
()
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'test_mkldnn'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
mkldnn_program
=
test_graph
.
to_program
()
w_mkldnn
=
np
.
array
(
scope
.
find_var
(
'conv2d_1.w_0'
).
get_tensor
())
# Check if weights are still integer
self
.
assertFalse
(
self
.
isinteger
(
np
.
sum
(
w_mkldnn
)))
# Check if the conv2d output is rightly linked to fake_dequantize's
# output
self
.
check_program
(
mkldnn_program
)
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'w_mkldnn'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
np
.
sum
(
w_mkldnn
)))
def
test_mkldnn_graph_cpu_static
(
self
):
with
fluid
.
unique_name
.
guard
():
self
.
mkldnn_based_freeze_graph
(
False
,
seed
=
2
,
activation_quant_type
=
'range_abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
mkldnn_based_freeze_graph
(
False
,
seed
=
2
,
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录