Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8deaf352
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8deaf352
编写于
3月 31, 2022
作者:
Y
YixinKristy
提交者:
GitHub
3月 31, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'PaddlePaddle:release/2.4' into release/2.4
上级
f932438d
3b35926d
变更
15
展开全部
隐藏空白更改
内联
并排
Showing
15 changed file
with
247 addition
and
224 deletion
+247
-224
configs/datasets/coco_detection.yml
configs/datasets/coco_detection.yml
+1
-0
configs/datasets/coco_instance.yml
configs/datasets/coco_instance.yml
+1
-0
configs/datasets/dota.yml
configs/datasets/dota.yml
+1
-0
configs/mot/bytetrack/_base_/mot17.yml
configs/mot/bytetrack/_base_/mot17.yml
+1
-0
configs/mot/deepsort/_base_/mot17.yml
configs/mot/deepsort/_base_/mot17.yml
+1
-0
configs/picodet/README.md
configs/picodet/README.md
+95
-91
configs/picodet/README_en.md
configs/picodet/README_en.md
+92
-95
deploy/pphuman/datacollector.py
deploy/pphuman/datacollector.py
+3
-1
deploy/pphuman/mtmct.py
deploy/pphuman/mtmct.py
+3
-4
deploy/pphuman/pipeline.py
deploy/pphuman/pipeline.py
+3
-1
deploy/python/infer.py
deploy/python/infer.py
+3
-3
ppdet/data/source/category.py
ppdet/data/source/category.py
+10
-1
ppdet/metrics/mcmot_metrics.py
ppdet/metrics/mcmot_metrics.py
+3
-3
ppdet/metrics/mot_metrics.py
ppdet/metrics/mot_metrics.py
+8
-7
ppdet/modeling/architectures/meta_arch.py
ppdet/modeling/architectures/meta_arch.py
+22
-18
未找到文件。
configs/datasets/coco_detection.yml
浏览文件 @
8deaf352
...
...
@@ -17,3 +17,4 @@ EvalDataset:
TestDataset
:
!ImageFolder
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco
configs/datasets/coco_instance.yml
浏览文件 @
8deaf352
...
...
@@ -17,3 +17,4 @@ EvalDataset:
TestDataset
:
!ImageFolder
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco
configs/datasets/dota.yml
浏览文件 @
8deaf352
...
...
@@ -17,3 +17,4 @@ EvalDataset:
TestDataset
:
!ImageFolder
anno_path
:
trainval_split/s2anet_trainval_paddle_coco.json
dataset_dir
:
dataset/DOTA_1024_s2anet/
configs/mot/bytetrack/_base_/mot17.yml
浏览文件 @
8deaf352
...
...
@@ -17,6 +17,7 @@ EvalDataset:
TestDataset
:
!ImageFolder
dataset_dir
:
dataset/mot/MOT17
anno_path
:
annotations/val_half.json
...
...
configs/mot/deepsort/_base_/mot17.yml
浏览文件 @
8deaf352
...
...
@@ -17,6 +17,7 @@ EvalDataset:
TestDataset
:
!ImageFolder
dataset_dir
:
dataset/mot/MOT17
anno_path
:
annotations/val_half.json
...
...
configs/picodet/README.md
浏览文件 @
8deaf352
此差异已折叠。
点击以展开。
configs/picodet/README_
c
n.md
→
configs/picodet/README_
e
n.md
浏览文件 @
8deaf352
此差异已折叠。
点击以展开。
deploy/pphuman/datacollector.py
浏览文件 @
8deaf352
...
...
@@ -35,6 +35,9 @@ class Result(object):
return
self
.
res_dict
[
name
]
return
None
def
clear
(
self
,
name
):
self
.
res_dict
[
name
].
clear
()
class
DataCollector
(
object
):
"""
...
...
@@ -80,7 +83,6 @@ class DataCollector(object):
ids
=
int
(
mot_item
[
0
])
if
ids
not
in
self
.
collector
:
self
.
collector
[
ids
]
=
copy
.
deepcopy
(
self
.
mots
)
self
.
collector
[
ids
][
"frames"
].
append
(
frameid
)
self
.
collector
[
ids
][
"rects"
].
append
([
mot_item
[
2
:]])
if
attr_res
:
...
...
deploy/pphuman/mtmct.py
浏览文件 @
8deaf352
...
...
@@ -297,10 +297,9 @@ def distill_idfeat(mot_res):
feature_new
=
feature_list
#if available frames number is more than 200, take one frame data per 20 frames
if
len
(
qualities_new
)
>
200
:
skipf
=
20
else
:
skipf
=
max
(
10
,
len
(
qualities_new
)
//
10
)
skipf
=
1
if
len
(
qualities_new
)
>
20
:
skipf
=
2
quality_skip
=
np
.
array
(
qualities_new
[::
skipf
])
feature_skip
=
np
.
array
(
feature_new
[::
skipf
])
...
...
deploy/pphuman/pipeline.py
浏览文件 @
8deaf352
...
...
@@ -587,7 +587,7 @@ class PipePredictor(object):
if
self
.
cfg
[
'visual'
]:
self
.
action_visual_helper
.
update
(
action_res
)
if
self
.
with_mtmct
:
if
self
.
with_mtmct
and
frame_id
%
10
==
0
:
crop_input
,
img_qualities
,
rects
=
self
.
reid_predictor
.
crop_image_with_mot
(
frame
,
mot_res
)
if
frame_id
>
self
.
warmup_frame
:
...
...
@@ -603,6 +603,8 @@ class PipePredictor(object):
"rects"
:
rects
}
self
.
pipeline_res
.
update
(
reid_res_dict
,
'reid'
)
else
:
self
.
pipeline_res
.
clear
(
'reid'
)
self
.
collector
.
append
(
frame_id
,
self
.
pipeline_res
)
...
...
deploy/python/infer.py
浏览文件 @
8deaf352
...
...
@@ -231,7 +231,7 @@ class Detector(object):
self
.
det_times
.
preprocess_time_s
.
end
()
# model prediction
result
=
self
.
predict
(
repeats
=
repeats
)
# warmup
result
=
self
.
predict
(
repeats
=
50
)
# warmup
self
.
det_times
.
inference_time_s
.
start
()
result
=
self
.
predict
(
repeats
=
repeats
)
self
.
det_times
.
inference_time_s
.
end
(
repeats
=
repeats
)
...
...
@@ -296,7 +296,7 @@ class Detector(object):
if
not
os
.
path
.
exists
(
self
.
output_dir
):
os
.
makedirs
(
self
.
output_dir
)
out_path
=
os
.
path
.
join
(
self
.
output_dir
,
video_out_name
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
index
=
1
while
(
1
):
...
...
@@ -790,7 +790,7 @@ def main():
if
FLAGS
.
image_dir
is
None
and
FLAGS
.
image_file
is
not
None
:
assert
FLAGS
.
batch_size
==
1
,
"batch_size should be 1, when image_file is not None"
img_list
=
get_test_images
(
FLAGS
.
image_dir
,
FLAGS
.
image_file
)
detector
.
predict_image
(
img_list
,
FLAGS
.
run_benchmark
,
repeats
=
10
)
detector
.
predict_image
(
img_list
,
FLAGS
.
run_benchmark
,
repeats
=
10
0
)
if
not
FLAGS
.
run_benchmark
:
detector
.
det_times
.
info
(
average
=
True
)
else
:
...
...
ppdet/data/source/category.py
浏览文件 @
8deaf352
...
...
@@ -39,6 +39,11 @@ def get_categories(metric_type, anno_file=None, arch=None):
if
arch
==
'keypoint_arch'
:
return
(
None
,
{
'id'
:
'keypoint'
})
if
anno_file
==
None
or
(
not
os
.
path
.
isfile
(
anno_file
)):
logger
.
warning
(
"anno_file '{}' is None or not set or not exist, "
"please recheck TrainDataset/EvalDataset/TestDataset.anno_path, "
"otherwise the default categories will be used by metric_type."
.
format
(
anno_file
))
if
metric_type
.
lower
()
==
'coco'
or
metric_type
.
lower
(
)
==
'rbox'
or
metric_type
.
lower
()
==
'snipercoco'
:
if
anno_file
and
os
.
path
.
isfile
(
anno_file
):
...
...
@@ -55,8 +60,9 @@ def get_categories(metric_type, anno_file=None, arch=None):
# anno file not exist, load default categories of COCO17
else
:
if
metric_type
.
lower
()
==
'rbox'
:
logger
.
warning
(
"metric_type: {}, load default categories of DOTA."
.
format
(
metric_type
))
return
_dota_category
()
logger
.
warning
(
"metric_type: {}, load default categories of COCO."
.
format
(
metric_type
))
return
_coco17_category
()
elif
metric_type
.
lower
()
==
'voc'
:
...
...
@@ -77,6 +83,7 @@ def get_categories(metric_type, anno_file=None, arch=None):
# anno file not exist, load default categories of
# VOC all 20 categories
else
:
logger
.
warning
(
"metric_type: {}, load default categories of VOC."
.
format
(
metric_type
))
return
_vocall_category
()
elif
metric_type
.
lower
()
==
'oid'
:
...
...
@@ -104,6 +111,7 @@ def get_categories(metric_type, anno_file=None, arch=None):
return
clsid2catid
,
catid2name
# anno file not exist, load default category 'pedestrian'.
else
:
logger
.
warning
(
"metric_type: {}, load default categories of pedestrian MOT."
.
format
(
metric_type
))
return
_mot_category
(
category
=
'pedestrian'
)
elif
metric_type
.
lower
()
in
[
'kitti'
,
'bdd100kmot'
]:
...
...
@@ -122,6 +130,7 @@ def get_categories(metric_type, anno_file=None, arch=None):
return
clsid2catid
,
catid2name
# anno file not exist, load default categories of visdrone all 10 categories
else
:
logger
.
warning
(
"metric_type: {}, load default categories of VisDrone."
.
format
(
metric_type
))
return
_visdrone_category
()
else
:
...
...
ppdet/metrics/mcmot_metrics.py
浏览文件 @
8deaf352
...
...
@@ -26,8 +26,6 @@ from motmetrics.math_util import quiet_divide
import
numpy
as
np
import
pandas
as
pd
import
paddle
import
paddle.nn.functional
as
F
from
.metrics
import
Metric
import
motmetrics
as
mm
import
openpyxl
...
...
@@ -311,7 +309,9 @@ class MCMOTEvaluator(object):
self
.
gt_filename
=
os
.
path
.
join
(
self
.
data_root
,
'../'
,
'sequences'
,
'{}.txt'
.
format
(
self
.
seq_name
))
if
not
os
.
path
.
exists
(
self
.
gt_filename
):
logger
.
warning
(
"gt_filename '{}' of MCMOTEvaluator is not exist, so the MOTA will be -inf."
)
def
reset_accumulator
(
self
):
import
motmetrics
as
mm
mm
.
lap
.
default_solver
=
'lap'
...
...
ppdet/metrics/mot_metrics.py
浏览文件 @
8deaf352
...
...
@@ -22,8 +22,7 @@ import sys
import
math
from
collections
import
defaultdict
import
numpy
as
np
import
paddle
import
paddle.nn.functional
as
F
from
ppdet.modeling.bbox_utils
import
bbox_iou_np_expand
from
.map_utils
import
ap_per_class
from
.metrics
import
Metric
...
...
@@ -36,8 +35,10 @@ __all__ = ['MOTEvaluator', 'MOTMetric', 'JDEDetMetric', 'KITTIMOTMetric']
def
read_mot_results
(
filename
,
is_gt
=
False
,
is_ignore
=
False
):
valid_labels
=
{
1
}
ignore_labels
=
{
2
,
7
,
8
,
12
}
# only in motchallenge datasets like 'MOT16'
valid_label
=
[
1
]
ignore_labels
=
[
2
,
7
,
8
,
12
]
# only in motchallenge datasets like 'MOT16'
logger
.
info
(
"In MOT16/17 dataset the valid_label of ground truth is '{}', "
"in other dataset it should be '0' for single classs MOT."
.
format
(
valid_label
[
0
]))
results_dict
=
dict
()
if
os
.
path
.
isfile
(
filename
):
with
open
(
filename
,
'r'
)
as
f
:
...
...
@@ -50,12 +51,10 @@ def read_mot_results(filename, is_gt=False, is_ignore=False):
continue
results_dict
.
setdefault
(
fid
,
list
())
box_size
=
float
(
linelist
[
4
])
*
float
(
linelist
[
5
])
if
is_gt
:
label
=
int
(
float
(
linelist
[
7
]))
mark
=
int
(
float
(
linelist
[
6
]))
if
mark
==
0
or
label
not
in
valid_label
s
:
if
mark
==
0
or
label
not
in
valid_label
:
continue
score
=
1
elif
is_ignore
:
...
...
@@ -118,6 +117,8 @@ class MOTEvaluator(object):
assert
self
.
data_type
==
'mot'
gt_filename
=
os
.
path
.
join
(
self
.
data_root
,
self
.
seq_name
,
'gt'
,
'gt.txt'
)
if
not
os
.
path
.
exists
(
gt_filename
):
logger
.
warning
(
"gt_filename '{}' of MOTEvaluator is not exist, so the MOTA will be -inf."
)
self
.
gt_frame_dict
=
read_mot_results
(
gt_filename
,
is_gt
=
True
)
self
.
gt_ignore_frame_dict
=
read_mot_results
(
gt_filename
,
is_ignore
=
True
)
...
...
ppdet/modeling/architectures/meta_arch.py
浏览文件 @
8deaf352
...
...
@@ -22,22 +22,23 @@ class BaseArch(nn.Layer):
self
.
fuse_norm
=
False
def
load_meanstd
(
self
,
cfg_transform
):
self
.
scale
=
1.
self
.
mean
=
paddle
.
to_tensor
([
0.485
,
0.456
,
0.406
]).
reshape
(
(
1
,
3
,
1
,
1
))
self
.
std
=
paddle
.
to_tensor
([
0.229
,
0.224
,
0.225
]).
reshape
((
1
,
3
,
1
,
1
))
scale
=
1.
mean
=
np
.
array
([
0.485
,
0.456
,
0.406
],
dtype
=
np
.
float32
)
std
=
np
.
array
([
0.229
,
0.224
,
0.225
],
dtype
=
np
.
float32
)
for
item
in
cfg_transform
:
if
'NormalizeImage'
in
item
:
self
.
mean
=
paddle
.
to_tensor
(
item
[
'NormalizeImage'
][
'mean'
]).
reshape
((
1
,
3
,
1
,
1
))
self
.
std
=
paddle
.
to_tensor
(
item
[
'NormalizeImage'
][
'std'
]).
reshape
((
1
,
3
,
1
,
1
))
mean
=
np
.
array
(
item
[
'NormalizeImage'
][
'mean'
],
dtype
=
np
.
float32
)
std
=
np
.
array
(
item
[
'NormalizeImage'
][
'std'
],
dtype
=
np
.
float32
)
if
item
[
'NormalizeImage'
].
get
(
'is_scale'
,
True
):
s
elf
.
s
cale
=
1.
/
255.
scale
=
1.
/
255.
break
if
self
.
data_format
==
'NHWC'
:
self
.
mean
=
self
.
mean
.
reshape
(
1
,
1
,
1
,
3
)
self
.
std
=
self
.
std
.
reshape
(
1
,
1
,
1
,
3
)
self
.
scale
=
paddle
.
to_tensor
(
scale
/
std
).
reshape
((
1
,
1
,
1
,
3
))
self
.
bias
=
paddle
.
to_tensor
(
-
mean
/
std
).
reshape
((
1
,
1
,
1
,
3
))
else
:
self
.
scale
=
paddle
.
to_tensor
(
scale
/
std
).
reshape
((
1
,
3
,
1
,
1
))
self
.
bias
=
paddle
.
to_tensor
(
-
mean
/
std
).
reshape
((
1
,
3
,
1
,
1
))
def
forward
(
self
,
inputs
):
if
self
.
data_format
==
'NHWC'
:
...
...
@@ -46,7 +47,7 @@ class BaseArch(nn.Layer):
if
self
.
fuse_norm
:
image
=
inputs
[
'image'
]
self
.
inputs
[
'image'
]
=
(
image
*
self
.
scale
-
self
.
mean
)
/
self
.
std
self
.
inputs
[
'image'
]
=
image
*
self
.
scale
+
self
.
bias
self
.
inputs
[
'im_shape'
]
=
inputs
[
'im_shape'
]
self
.
inputs
[
'scale_factor'
]
=
inputs
[
'scale_factor'
]
else
:
...
...
@@ -66,8 +67,7 @@ class BaseArch(nn.Layer):
outs
=
[]
for
inp
in
inputs_list
:
if
self
.
fuse_norm
:
self
.
inputs
[
'image'
]
=
(
inp
[
'image'
]
*
self
.
scale
-
self
.
mean
)
/
self
.
std
self
.
inputs
[
'image'
]
=
inp
[
'image'
]
*
self
.
scale
+
self
.
bias
self
.
inputs
[
'im_shape'
]
=
inp
[
'im_shape'
]
self
.
inputs
[
'scale_factor'
]
=
inp
[
'scale_factor'
]
else
:
...
...
@@ -75,7 +75,7 @@ class BaseArch(nn.Layer):
outs
.
append
(
self
.
get_pred
())
# multi-scale test
if
len
(
outs
)
>
1
:
if
len
(
outs
)
>
1
:
out
=
self
.
merge_multi_scale_predictions
(
outs
)
else
:
out
=
outs
[
0
]
...
...
@@ -92,7 +92,9 @@ class BaseArch(nn.Layer):
keep_top_k
=
self
.
bbox_post_process
.
nms
.
keep_top_k
nms_threshold
=
self
.
bbox_post_process
.
nms
.
nms_threshold
else
:
raise
Exception
(
"Multi scale test only supports CascadeRCNN, FasterRCNN and MaskRCNN for now"
)
raise
Exception
(
"Multi scale test only supports CascadeRCNN, FasterRCNN and MaskRCNN for now"
)
final_boxes
=
[]
all_scale_outs
=
paddle
.
concat
([
o
[
'bbox'
]
for
o
in
outs
]).
numpy
()
...
...
@@ -101,9 +103,11 @@ class BaseArch(nn.Layer):
if
np
.
count_nonzero
(
idxs
)
==
0
:
continue
r
=
nms
(
all_scale_outs
[
idxs
,
1
:],
nms_threshold
)
final_boxes
.
append
(
np
.
concatenate
([
np
.
full
((
r
.
shape
[
0
],
1
),
c
),
r
],
1
))
final_boxes
.
append
(
np
.
concatenate
([
np
.
full
((
r
.
shape
[
0
],
1
),
c
),
r
],
1
))
out
=
np
.
concatenate
(
final_boxes
)
out
=
np
.
concatenate
(
sorted
(
out
,
key
=
lambda
e
:
e
[
1
])[
-
keep_top_k
:]).
reshape
((
-
1
,
6
))
out
=
np
.
concatenate
(
sorted
(
out
,
key
=
lambda
e
:
e
[
1
])[
-
keep_top_k
:]).
reshape
((
-
1
,
6
))
out
=
{
'bbox'
:
paddle
.
to_tensor
(
out
),
'bbox_num'
:
paddle
.
to_tensor
(
np
.
array
([
out
.
shape
[
0
],
]))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录