Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8de4d31a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8de4d31a
编写于
3月 07, 2019
作者:
H
heqiaozhi
提交者:
dongdaxiang
3月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refactor async exe
上级
24863897
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
269 addition
and
69 deletion
+269
-69
python/paddle/fluid/async_executor.py
python/paddle/fluid/async_executor.py
+9
-3
python/paddle/fluid/distributed/downpour.py
python/paddle/fluid/distributed/downpour.py
+63
-23
python/paddle/fluid/distributed/node.py
python/paddle/fluid/distributed/node.py
+24
-0
python/paddle/fluid/distributed/ps_pb2.py
python/paddle/fluid/distributed/ps_pb2.py
+173
-43
未找到文件。
python/paddle/fluid/async_executor.py
浏览文件 @
8de4d31a
...
...
@@ -121,7 +121,9 @@ class AsyncExecutor(object):
with
open
(
"trainer_desc.proto"
,
"w"
)
as
fout
:
fout
.
write
(
trainer
.
_desc
())
# define a trainer and a device_worker here
self
.
executor
.
run_from_files
(
program_desc
,
trainer
.
_desc
(),
debug
)
self
.
executor
.
run_from_files
(
program_desc
,
trainer
.
_desc
(),
debug
,
str
(
id
(
program_desc
)))
'''
def run(self,
...
...
@@ -194,7 +196,7 @@ class AsyncExecutor(object):
self.executor.run_from_files(program_desc,
data_feed.desc(), filelist, thread_num,
fetch_var_names, mode, debug)
fetch_var_names, mode, debug
, str(id(program_desc))
)
'''
def
download_data
(
self
,
...
...
@@ -313,7 +315,11 @@ class AsyncExecutor(object):
self
.
dist_desc
=
dist_desc
place
=
core
.
CPUPlace
()
executor
=
Executor
(
place
)
executor
.
run
(
startup_program
)
if
isinstance
(
startup_program
,
list
):
for
sp
in
startup_program
:
executor
.
run
(
sp
)
else
:
executor
.
run
(
startup_program
)
self
.
instance
.
barrier_all
()
#wait all server start
ips
=
self
.
instance
.
gather_ips
()
...
...
python/paddle/fluid/distributed/downpour.py
浏览文件 @
8de4d31a
...
...
@@ -43,9 +43,13 @@ class DownpourSGD(object):
self
.
learning_rate_
=
learning_rate
self
.
window_
=
window
self
.
type
=
"downpour"
self
.
data_norm_name
=
[
".batch_size"
,
".batch_square_sum"
,
".batch_sum"
,
".batch_size@GRAD"
,
".batch_square_sum@GRAD"
,
".batch_sum@GRAD"
]
def
minimize
(
self
,
loss
,
loss
es
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
...
...
@@ -65,39 +69,75 @@ class DownpourSGD(object):
worker_skipped_ops: operator names that need
to be skipped during execution
"""
params_grads
=
sorted
(
append_backward
(
loss
,
parameter_list
,
no_grad_set
),
key
=
lambda
x
:
x
[
0
].
name
)
table_name
=
find_distributed_lookup_table
(
loss
.
block
.
program
)
if
not
isinstance
(
losses
,
list
):
raise
ValueError
(
'losses is a list, just lick [model.cost]'
)
table_name
=
find_distributed_lookup_table
(
losses
[
0
].
block
.
program
)
prefetch_slots
=
find_distributed_lookup_table_inputs
(
loss
.
block
.
program
,
table_name
)
loss
es
[
0
]
.
block
.
program
,
table_name
)
prefetch_slots_emb
=
find_distributed_lookup_table_outputs
(
loss
.
block
.
program
,
table_name
)
losses
[
0
].
block
.
program
,
table_name
)
ps_param
=
pslib
.
PSParameter
()
server
=
DownpourServer
()
# window is communication strategy
worker
=
DownpourWorker
(
self
.
window_
)
# Todo(guru4elephant): support multiple tables definitions
# currently support one big sparse table
sparse_table_index
=
0
# currently merge all dense parameters into one dense table
dense_table_index
=
1
params
=
[]
grads
=
[]
for
i
in
params_grads
:
params
.
append
(
i
[
0
])
for
i
in
params_grads
:
grads
.
append
(
i
[
1
])
server
.
add_sparse_table
(
sparse_table_index
,
self
.
learning_rate_
,
prefetch_slots
,
prefetch_slots_emb
)
server
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
params
,
grads
)
worker
.
add_sparse_table
(
sparse_table_index
,
self
.
learning_rate_
,
prefetch_slots
,
prefetch_slots_emb
)
worker
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
params
,
grads
)
ps_param
=
pslib
.
PSParameter
()
dense_table_index
=
1
program_configs
=
[]
for
loss_index
in
range
(
len
(
losses
)):
program_config
=
ps_param
.
trainer_param
.
program_config
.
add
()
program_config
.
program_id
=
str
(
id
(
losses
[
loss_index
].
block
.
program
))
program_config
.
pull_sparse_table_id
.
extend
([
sparse_table_index
])
program_config
.
push_sparse_table_id
.
extend
([
sparse_table_index
])
params_grads
=
sorted
(
append_backward
(
losses
[
loss_index
],
parameter_list
,
no_grad_set
),
key
=
lambda
x
:
x
[
0
].
name
)
params
=
[]
grads
=
[]
data_norm_params
=
[]
data_norm_grads
=
[]
for
i
in
params_grads
:
is_data_norm_data
=
False
for
data_norm_name
in
self
.
data_norm_name
:
if
i
[
0
].
name
.
endswith
(
data_norm_name
):
is_data_norm_data
=
True
data_norm_params
.
append
(
i
[
0
])
if
not
is_data_norm_data
:
params
.
append
(
i
[
0
])
for
i
in
params_grads
:
is_data_norm_data
=
False
for
data_norm_grad
in
self
.
data_norm_name
:
if
i
[
0
].
name
.
endswith
(
data_norm_grad
):
is_data_norm_data
=
True
data_norm_grads
.
append
(
i
[
1
])
if
not
is_data_norm_data
:
grads
.
append
(
i
[
1
])
server
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
params
,
grads
)
worker
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
params
,
grads
)
program_config
.
pull_dense_table_id
.
extend
([
dense_table_index
])
program_config
.
push_dense_table_id
.
extend
([
dense_table_index
])
if
len
(
data_norm_params
)
!=
0
and
len
(
data_norm_grads
)
!=
0
:
dense_table_index
+=
1
server
.
add_data_norm_table
(
dense_table_index
,
self
.
learning_rate_
,
data_norm_params
,
data_norm_grads
)
worker
.
add_dense_table
(
dense_table_index
,
self
.
learning_rate_
,
data_norm_params
,
data_norm_grads
)
program_config
.
pull_dense_table_id
.
extend
([
dense_table_index
])
program_config
.
push_dense_table_id
.
extend
([
dense_table_index
])
dense_table_index
+=
1
program_configs
.
append
(
program_config
)
ps_param
.
server_param
.
CopyFrom
(
server
.
get_desc
())
ps_param
.
trainer_param
.
CopyFrom
(
worker
.
get_desc
())
for
program_config
in
program_configs
:
ps_param
.
trainer_param
.
program_config
.
extend
([
program_config
])
# Todo(guru4elephant): figure out how to support more sparse parameters
# currently only support lookup_table
worker_skipped_ops
=
[
"lookup_table"
,
"lookup_table_grad"
]
...
...
python/paddle/fluid/distributed/node.py
浏览文件 @
8de4d31a
...
...
@@ -112,6 +112,30 @@ class DownpourServer(Server):
fea_dim
+=
reduce
(
lambda
x
,
y
:
x
*
y
,
param
.
shape
,
1
)
table
.
accessor
.
fea_dim
=
fea_dim
def
add_data_norm_table
(
self
,
table_id
,
learning_rate
,
param_var
,
grad_var
):
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters.
\
Can be a float value
param_var(list): all dense param. it is a list.
grad_var(list): all dense grad parm it is a list.
Returns:
return None
"""
table
=
self
.
server_
.
downpour_server_param
.
downpour_table_param
.
add
()
table
.
table_id
=
table_id
table
.
table_class
=
"DownpourDenseTable"
table
.
type
=
pslib
.
PS_DENSE_TABLE
table
.
accessor
.
accessor_class
=
"DownpourDenseValueAccessor"
table
.
accessor
.
dense_sgd_param
.
name
=
"summary"
table
.
accessor
.
dense_sgd_param
.
summary
.
summary_decay_rate
=
0.999999
fea_dim
=
0
for
param
in
filter
(
lambda
x
:
x
.
name
.
find
(
"embedding"
)
==
-
1
,
param_var
):
fea_dim
+=
reduce
(
lambda
x
,
y
:
x
*
y
,
param
.
shape
,
1
)
table
.
accessor
.
fea_dim
=
fea_dim
def
get_desc
(
self
):
"""
Return downpour server program_desc
...
...
python/paddle/fluid/distributed/ps_pb2.py
浏览文件 @
8de4d31a
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录