Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8ce95746
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8ce95746
编写于
9月 22, 2020
作者:
W
wangxinxin08
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
finish data preprocess ops
上级
2ae4ac30
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
742 addition
and
48 deletion
+742
-48
configs/yolov5/yolov5_reader.yml
configs/yolov5/yolov5_reader.yml
+20
-16
ppdet/data/reader.py
ppdet/data/reader.py
+23
-7
ppdet/data/transform/op_helper.py
ppdet/data/transform/op_helper.py
+53
-0
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+646
-25
未找到文件。
configs/yolov5/yolov5_reader.yml
浏览文件 @
8ce95746
...
...
@@ -12,22 +12,27 @@ TrainReader:
sample_transforms
:
-
!DecodeImage
to_rgb
:
True
# with_mosaic: True
# - !MosaicImage
# offset: 0.3
# mosaic_scale: [0.8, 1.0]
# sample_scale: [0.8, 1.0]
# sample_flip: 0.5
# use_cv2: true
# interp: 2
-
!NormalizeBox
{}
with_mosaic
:
True
-
!Mosaic
target_size
:
640
-
!RandomPerspective
degree
:
0
translate
:
0.1
scale
:
0.5
shear
:
0.0
perspective
:
0.0
border
:
[
-320
,
-320
]
-
!RandomFlipImage
prob
:
0.5
is_normalized
:
false
-
!RandomHSV
hgain
:
0.015
sgain
:
0.7
vgain
:
0.4
-
!PadBox
num_max_boxes
:
50
-
!BboxXYXY2XYWH
{}
batch_transforms
:
-
!RandomShape
sizes
:
[
320
,
352
,
384
,
416
,
448
,
480
,
512
,
544
,
576
,
608
,
640
]
random_inter
:
True
-
!NormalizeImage
mean
:
[
0.0
,
0.0
,
0.0
]
std
:
[
1.0
,
1.0
,
1.0
]
...
...
@@ -37,10 +42,6 @@ TrainReader:
to_bgr
:
false
channel_first
:
True
# focus: false
-
!Gt2YoloTarget
anchor_masks
:
[[
0
,
1
,
2
],
[
3
,
4
,
5
],
[
6
,
7
,
8
]]
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
downsample_ratios
:
[
8
,
16
,
32
]
batch_size
:
2
mosaic_prob
:
0.3
...
...
@@ -49,6 +50,9 @@ TrainReader:
drop_last
:
true
worker_num
:
8
bufsize
:
16
target_size
:
640
rect
:
false
pad
:
0.5
use_process
:
true
EvalReader
:
...
...
ppdet/data/reader.py
浏览文件 @
8ce95746
...
...
@@ -21,6 +21,7 @@ import copy
import
functools
import
collections
import
traceback
import
random
import
numpy
as
np
import
logging
...
...
@@ -209,7 +210,8 @@ class Reader(object):
memsize
=
'3G'
,
inputs_def
=
None
,
devices_num
=
1
,
num_trainers
=
1
):
num_trainers
=
1
,
mosaic
=
False
):
self
.
_dataset
=
dataset
self
.
_roidbs
=
self
.
_dataset
.
get_roidb
()
if
rect
:
...
...
@@ -234,7 +236,8 @@ class Reader(object):
elif
mini
>
1
:
shapes
[
i
]
=
[
1
,
1
/
mini
]
batch_shapes
=
np
.
ceil
(
np
.
array
(
shapes
)
*
target_size
/
stride
+
pad
)
*
stride
batch_shapes
=
np
.
ceil
(
np
.
array
(
shapes
)
*
target_size
/
stride
+
pad
)
*
stride
new_roidbs
=
[
self
.
_roidbs
[
j
]
for
j
in
irect
]
self
.
_roidbs
=
new_roidbs
for
i
,
j
in
enumerate
(
bi
):
...
...
@@ -243,6 +246,8 @@ class Reader(object):
self
.
_fields
=
copy
.
deepcopy
(
inputs_def
[
'fields'
])
if
inputs_def
else
None
self
.
mosaic
=
mosaic
# transform
self
.
_sample_transforms
=
Compose
(
sample_transforms
,
{
'fields'
:
self
.
_fields
})
...
...
@@ -387,6 +392,17 @@ class Reader(object):
if
self
.
_load_img
:
sample
[
'image'
]
=
self
.
_load_image
(
sample
[
'im_file'
])
if
self
.
mosaic
:
sample
[
'mosaic'
]
=
[]
for
idx
in
[
random
.
randint
(
0
,
len
(
self
.
indexes
)
-
1
)
for
_
in
range
(
3
)
]:
rec
=
copy
.
deepcopy
(
self
.
_roidbs
[
idx
])
if
self
.
_load_img
:
rec
[
'image'
]
=
self
.
_load_image
(
rec
[
'im_file'
])
sample
[
'mosaic'
].
append
(
rec
)
if
self
.
_epoch
<
self
.
_mixup_epoch
:
num
=
len
(
self
.
indexes
)
mix_idx
=
np
.
random
.
randint
(
1
,
num
)
...
...
ppdet/data/transform/op_helper.py
浏览文件 @
8ce95746
...
...
@@ -462,3 +462,56 @@ def gaussian2D(shape, sigma_x=1, sigma_y=1):
sigma_y
)))
h
[
h
<
np
.
finfo
(
h
.
dtype
).
eps
*
h
.
max
()]
=
0
return
h
def
transform_bbox
(
bbox
,
label
,
M
,
w
,
h
,
area_thr
=
0.25
,
wh_thr
=
2
,
ar_thr
=
20
,
perspective
=
False
):
"""
Transfrom bbox according to tranformation matrix M
"""
# rotate bbox
n
=
len
(
bbox
)
xy
=
np
.
ones
((
n
*
4
,
3
),
dtype
=
np
.
float32
)
xy
[:,
:
2
]
=
bbox
[:,
[
0
,
1
,
2
,
3
,
0
,
3
,
2
,
1
]].
reshape
(
n
*
4
,
2
)
# xy = xy @ M.T
xy
=
np
.
matmul
(
xy
,
M
.
T
)
if
perspective
:
xy
=
(
xy
[:,
:
2
]
/
xy
[:,
2
:
3
]).
reshape
(
n
,
8
)
else
:
xy
=
xy
[:,
:
2
].
reshape
(
n
,
8
)
# get new bboxes
x
=
xy
[:,
[
0
,
2
,
4
,
6
]]
y
=
xy
[:,
[
1
,
3
,
5
,
7
]]
new_bbox
=
np
.
concatenate
(
(
x
.
min
(
1
),
y
.
min
(
1
),
x
.
max
(
1
),
y
.
max
(
1
))).
reshape
(
4
,
n
).
T
# clip boxes
new_bbox
,
mask
=
clip_bbox
(
new_bbox
,
w
,
h
,
area_thr
)
new_label
=
label
[
mask
]
return
new_bbox
,
new_label
def
clip_bbox
(
bbox
,
w
,
h
,
area_thr
=
0.25
,
wh_thr
=
2
,
ar_thr
=
20
):
"""
clip bbox according to w and h
"""
# clip boxes
area1
=
(
bbox
[:,
2
:
4
]
-
bbox
[:,
0
:
2
]).
prod
(
1
)
bbox
[:,
[
0
,
2
]]
=
bbox
[:,
[
0
,
2
]].
clip
(
0
,
w
)
bbox
[:,
[
1
,
3
]]
=
bbox
[:,
[
1
,
3
]].
clip
(
0
,
h
)
# compute
area2
=
(
bbox
[:,
2
:
4
]
-
bbox
[:,
0
:
2
]).
prod
(
1
)
area_ratio
=
area2
/
(
area1
+
1e-16
)
wh
=
bbox
[:,
2
:
4
]
-
bbox
[:,
0
:
2
]
ar_ratio
=
np
.
maximum
(
wh
[:,
1
]
/
(
wh
[:,
0
]
+
1e-16
),
wh
[:,
0
]
/
(
wh
[:,
1
]
+
1e-16
))
mask
=
(
area_ratio
>
area_thr
)
&
(
(
wh
>
wh_thr
).
all
(
1
))
&
(
ar_ratio
<
ar_thr
)
bbox
=
bbox
[
mask
]
return
bbox
,
mask
\ No newline at end of file
ppdet/data/transform/operators.py
浏览文件 @
8ce95746
...
...
@@ -40,11 +40,11 @@ from PIL import Image, ImageEnhance, ImageDraw
from
ppdet.core.workspace
import
serializable
from
ppdet.modeling.ops
import
AnchorGrid
from
.op_helper
import
(
satisfy_sample_constraint
,
filter_and_process
,
generate_sample_bbox
,
clip_bbox
,
data_anchor_sampling
,
satisfy_sample_constraint_coverage
,
crop_image_sampling
,
generate_sample_bbox_square
,
bbox_area_sampling
,
is_poly
,
gaussian_radius
,
draw_gaussian
)
from
.op_helper
import
(
satisfy_sample_constraint
,
filter_and_process
,
generate_sample_bbox
,
clip_bbox
,
data_anchor_sampling
,
satisfy_sample_constraint_coverage
,
crop_image_sampling
,
generate_sample_bbox_square
,
bbox_area_sampling
,
is_poly
,
gaussian_radius
,
draw_gaussian
,
transform_bbox
,
clip_bbox
)
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -90,7 +90,11 @@ class BaseOperator(object):
@
register_op
class
DecodeImage
(
BaseOperator
):
def
__init__
(
self
,
to_rgb
=
True
,
with_mixup
=
False
,
with_cutmix
=
False
):
def
__init__
(
self
,
to_rgb
=
True
,
with_mixup
=
False
,
with_cutmix
=
False
,
with_mosaic
=
False
):
""" Transform the image data to numpy format.
Args:
to_rgb (bool): whether to convert BGR to RGB
...
...
@@ -102,6 +106,7 @@ class DecodeImage(BaseOperator):
self
.
to_rgb
=
to_rgb
self
.
with_mixup
=
with_mixup
self
.
with_cutmix
=
with_cutmix
self
.
with_mosaic
=
with_mosaic
if
not
isinstance
(
self
.
to_rgb
,
bool
):
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
if
not
isinstance
(
self
.
with_mixup
,
bool
):
...
...
@@ -150,6 +155,10 @@ class DecodeImage(BaseOperator):
if
self
.
with_cutmix
and
'cutmix'
in
sample
:
self
.
__call__
(
sample
[
'cutmix'
],
context
)
if
self
.
with_mosaic
and
'mosaic'
in
sample
:
for
x
in
sample
[
'mosaic'
]:
self
.
__call__
(
x
,
context
)
# decode semantic label
if
'semantic'
in
sample
.
keys
()
and
sample
[
'semantic'
]
is
not
None
:
sem_file
=
sample
[
'semantic'
]
...
...
@@ -292,11 +301,11 @@ class ResizeImage(BaseOperator):
self
.
use_cv2
=
use_cv2
if
not
(
isinstance
(
target_size
,
int
)
or
isinstance
(
target_size
,
list
)):
raise
TypeError
(
"Type of target_size is invalid. Must be Integer or List, now is {}"
.
format
(
type
(
target_size
)))
"Type of target_size is invalid. Must be Integer or List, now is {}"
.
format
(
type
(
target_size
)))
self
.
target_size
=
target_size
if
not
(
isinstance
(
self
.
max_size
,
int
)
and
isinstance
(
self
.
interp
,
int
)):
if
not
(
isinstance
(
self
.
max_size
,
int
)
and
isinstance
(
self
.
interp
,
int
)):
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
def
__call__
(
self
,
sample
,
context
=
None
):
...
...
@@ -372,30 +381,49 @@ class ResizeImage(BaseOperator):
sample
[
'image'
]
=
im
return
sample
@
register_op
class
ResizeAndKeepRatio
(
BaseOperator
):
def
__init__
(
self
,
target_size
,
augment
=
False
):
def
__init__
(
self
,
target_size
,
augment
=
False
,
with_mosaic
=
False
):
super
(
ResizeAndKeepRatio
,
self
).
__init__
()
self
.
target_size
=
target_size
self
.
augment
=
augment
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
h0
,
w0
=
im
.
shape
[:
2
]
r
=
self
.
target_size
/
max
(
h0
,
w0
)
if
r
!=
1
:
interp
=
cv2
.
INTER_AREA
if
r
<
1
and
not
self
.
augment
else
cv2
.
INTER_LINEAR
im
=
cv2
.
resize
(
im
,
(
int
(
w0
*
r
),
int
(
h0
*
r
)),
interpolation
=
interp
)
im
=
cv2
.
resize
(
im
,
(
int
(
w0
*
r
),
int
(
h0
*
r
)),
interpolation
=
interp
)
bbox
=
bbox
*
(
r
,
r
,
r
,
r
)
bbox
=
bbox
.
clip
(
h0
,
w0
)
sample
[
'image'
]
=
im
sample
[
'im_size'
]
=
[
float
(
h0
),
float
(
w0
)]
sample
[
'im_scale'
]
=
[
1.
/
r
,
1.
/
r
]
sample
[
'gt_bbox'
]
=
bbox
if
self
.
with_mosaic
and
mosaic
in
sample
:
for
x
in
sample
[
'mosaic'
]:
self
.
__call__
(
x
,
context
)
return
sample
@
register_op
class
LetterBox
(
BaseOperator
):
def
__init__
(
self
,
target_size
,
rect
=
True
,
color
=
(
114
,
114
,
114
),
auto
=
True
,
scaleFill
=
False
,
augment
=
True
):
def
__init__
(
self
,
target_size
,
rect
=
True
,
color
=
(
114
,
114
,
114
),
auto
=
True
,
scaleFill
=
False
,
augment
=
True
):
super
(
LetterBox
,
self
).
__init__
()
if
isinstance
(
target_size
,
int
):
target_size
=
(
target_size
,
target_size
)
...
...
@@ -416,13 +444,15 @@ class LetterBox(BaseOperator):
ratio
=
r
,
r
new_unpad
=
int
(
round
(
shape
[
1
]
*
r
)),
int
(
round
(
shape
[
0
]
*
r
))
dw
,
dh
=
new_shape
[
1
]
-
new_unpad
[
0
],
new_shape
[
0
]
-
new_unpad
[
1
]
# wh padding
dw
,
dh
=
new_shape
[
1
]
-
new_unpad
[
0
],
new_shape
[
0
]
-
new_unpad
[
1
]
# wh padding
if
self
.
auto
:
# minimum rectangle
dw
,
dh
=
np
.
mod
(
dw
,
64
),
np
.
mod
(
dh
,
64
)
# wh padding
elif
self
.
scaleFill
:
# stretch
dw
,
dh
=
0.0
,
0.0
new_unpad
=
(
new_shape
[
1
],
new_shape
[
0
])
ratio
=
new_shape
[
1
]
/
shape
[
1
],
new_shape
[
0
]
/
shape
[
0
]
# width, height ratios
ratio
=
new_shape
[
1
]
/
shape
[
1
],
new_shape
[
0
]
/
shape
[
0
]
# width, height ratios
dw
/=
2
# divide padding into 2 sides
dh
/=
2
...
...
@@ -431,7 +461,9 @@ class LetterBox(BaseOperator):
im
=
cv2
.
resize
(
im
,
new_unpad
,
interpolation
=
cv2
.
INTER_LINEAR
)
top
,
bottom
=
int
(
round
(
dh
-
0.1
)),
int
(
round
(
dh
+
0.1
))
left
,
right
=
int
(
round
(
dw
-
0.1
)),
int
(
round
(
dw
+
0.1
))
im
=
cv2
.
copyMakeBorder
(
im
,
top
,
bottom
,
left
,
right
,
cv2
.
BORDER_CONSTANT
,
value
=
self
.
color
)
# add border
im
=
cv2
.
copyMakeBorder
(
im
,
top
,
bottom
,
left
,
right
,
cv2
.
BORDER_CONSTANT
,
value
=
self
.
color
)
# add border
sample
[
'image'
]
=
im
sample
[
'im_pad'
]
=
[
dh
,
dw
]
...
...
@@ -1331,8 +1363,8 @@ class MixupImage(BaseOperator):
if
factor
<=
0.0
:
return
sample
[
'mixup'
]
im
=
self
.
_mixup_img
(
sample
[
'image'
],
sample
[
'mixup'
][
'image'
],
factor
)
gt_bbox1
=
sample
[
'gt_bbox'
]
.
reshape
((
-
1
,
4
))
gt_bbox2
=
sample
[
'mixup'
][
'gt_bbox'
]
.
reshape
((
-
1
,
4
))
gt_bbox1
=
sample
[
'gt_bbox'
]
gt_bbox2
=
sample
[
'mixup'
][
'gt_bbox'
]
gt_bbox
=
np
.
concatenate
((
gt_bbox1
,
gt_bbox2
),
axis
=
0
)
gt_class1
=
sample
[
'gt_class'
]
gt_class2
=
sample
[
'mixup'
][
'gt_class'
]
...
...
@@ -2616,7 +2648,596 @@ class DebugVisibleImage(BaseOperator):
x1
=
round
(
keypoint
[
2
*
j
]).
astype
(
np
.
int32
)
y1
=
round
(
keypoint
[
2
*
j
+
1
]).
astype
(
np
.
int32
)
draw
.
ellipse
(
(
x1
,
y1
,
x1
+
5
,
y1
+
5
),
fill
=
'green'
,
outline
=
'green'
)
(
x1
,
y1
,
x1
+
5
,
y1i
+
5
),
fill
=
'green'
,
outline
=
'green'
)
save_path
=
os
.
path
.
join
(
self
.
output_dir
,
out_file_name
)
image
.
save
(
save_path
,
quality
=
95
)
return
sample
@
register_op
class
Rotate
(
BaseOperator
):
"""Rotate image and bboxes
Args:
degree (int, float): the angle of rotation in degrees
scale (float): scale factor
center (tuple): center of the rotation in the source image
area_thr (float): the area threshold of bbox to be kept after rotation, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def
__init__
(
self
,
degree
,
scale
=
1.0
,
center
=
None
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
Rotate
,
self
).
__init__
()
self
.
degree
=
degree
self
.
scale
=
scale
self
.
center
=
center
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
# rotate image
height
,
width
=
im
.
shape
[:
2
]
if
self
.
center
is
None
:
self
.
center
=
(
width
//
2
,
height
//
2
)
M
=
cv2
.
getRotationMatrix2D
(
self
.
center
,
self
.
degree
,
self
.
scale
)
im
=
cv2
.
warpAffine
(
im
,
M
,
(
width
,
height
),
borderValue
=
self
.
border_value
)
# rotate bbox
if
bbox
.
shape
[
0
]
>
0
:
new_bbox
,
new_label
=
transform_bbox
(
bbox
,
label
,
M
,
width
,
height
,
self
.
area_thr
)
else
:
new_bbox
,
new_label
=
bbox
,
label
sample
[
'image'
]
=
im
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
@
register_op
class
RandomRotate
(
BaseOperator
):
"""Rotate image and bboxes randomly
Args:
degree (int, float, list, tuple): if(int, float), the rotation degree will be uniformly sampled uniformly in [-abs(degree), abs(degree)]
if (list, tuple), the rotation degree will be uniformly sampled in [degree[0], degree[1]]
scale (float): the scale factor will be uniformly sampled in [1 - scale, 1 + scale]
center (tuple): center of the rotation in the source image
area_thr (float): the area threshold of bbox to be kept after rotation, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def
__init__
(
self
,
degree
,
scale
=
0.0
,
center
=
None
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
RandomRotate
,
self
).
__init__
()
if
isinstance
(
degree
,
(
int
,
float
)):
degree
=
abs
(
degree
)
degree
=
(
-
degree
,
degree
)
elif
isinstance
(
degree
,
list
)
or
isinstance
(
degree
,
tuple
):
assert
len
(
degree
)
==
2
,
'len of degree is not equal to 2'
else
:
raise
ValueError
(
'degree is not reasonable'
)
self
.
degree
=
degree
self
.
scale
=
scale
self
.
center
=
center
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
degree
=
random
.
uniform
(
*
self
.
degree
)
scale
=
random
.
uniform
(
1
-
self
.
scale
,
1
+
self
.
scale
)
rotate
=
Rotate
(
degree
,
scale
,
self
.
center
,
self
.
area_thr
,
self
.
border_value
)
return
rotate
(
sample
,
context
)
@
register_op
class
Shear
(
BaseOperator
):
"""Shear image and bboxes
Args:
shear (int, float, list, tuple): if (int, float), shear_x and shear_y are both equal to shear,
if (list, tuple), it means [shear_x, shear_y], the shear is in the format of degrees
area_thr (float): the area threshold of bbox to be kept after sheared, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def
__init__
(
self
,
shear
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
Shear
,
self
).
__init__
()
if
isinstance
(
shear
,
(
int
,
float
)):
shear
=
(
shear
,
shear
)
elif
isinstance
(
shear
,
list
)
or
isinstance
(
shear
,
tuple
):
assert
len
(
shear
)
==
2
,
'len of shear is not equal to 2'
else
:
raise
ValueError
(
'shear is not reasonable'
)
self
.
shear
=
shear
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
# shear image
height
,
width
=
im
.
shape
[:
2
]
shear_x
=
math
.
tan
(
self
.
shear
[
0
]
*
math
.
pi
/
180
)
shear_y
=
math
.
tan
(
self
.
shear
[
1
]
*
math
.
pi
/
180
)
M
=
np
.
array
([[
1
,
shear_x
,
0
],
[
shear_y
,
1
,
0
]])
im
=
cv2
.
warpAffine
(
im
,
M
,
(
width
,
height
),
borderValue
=
self
.
border_value
)
# shear box
if
bbox
.
shape
[
0
]
>
0
:
new_bbox
,
new_label
=
transform_bbox
(
bbox
,
label
,
M
,
width
,
height
,
self
.
area_thr
)
else
:
new_bbox
,
new_label
=
bbox
,
label
sample
[
'image'
]
=
im
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
@
register_op
class
RandomShear
(
BaseOperator
):
"""Shear image and bboxes randomly
Args:
shear_x (int, float, list, tuple): if (int, float), shear_x will be uniformly sampled in [-abs(shear_x), abs(shear_x)],
if (list, tuple), shear_x will be uniformly sampled in [shear_x[0], shear_x[1]], the shear_x is in the format of degrees
shear_y (int, float, list, tuple): if (int, float), shear_y will be uniformly sampled in [-abs(shear_y), abs(shear_y)],
if (list, tuple), shear_y will be uniformly sampled in [shear_y[0], shear_y[1]], the shear_y is in the format of degrees
area_thr (float): the area threshold of bbox to be kept after sheared, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def
__init__
(
self
,
shear_x
,
shear_y
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
RandomShear
,
self
).
__init__
()
if
isinstance
(
shear_x
,
(
int
,
float
)):
shear_x
=
abs
(
shear_x
)
shear_x
=
(
-
shear_x
,
shear_x
)
elif
isinstance
(
shear_x
,
list
)
or
isinstance
(
shear_x
,
tuple
):
assert
len
(
shear_x
)
==
2
,
'len of shear_x is not equal to 2'
else
:
raise
ValueError
(
'shear_x is not reasonable'
)
if
isinstance
(
shear_y
,
(
int
,
float
)):
shear_y
=
abs
(
shear_y
)
shear_y
=
(
-
shear_y
,
shear_y
)
elif
isinstance
(
shear_y
,
list
)
or
isinstance
(
shear_y
,
tuple
):
assert
len
(
shear_y
)
==
2
,
'len of shear_y is not equal to 2'
else
:
raise
ValueError
(
'shear_y is not reasonable'
)
self
.
shear_x
=
shear_x
self
.
shear_y
=
shear_y
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
shear_x
=
random
.
uniform
(
*
self
.
shear_x
)
shear_y
=
random
.
uniform
(
*
self
.
shear_y
)
shear
=
Shear
((
shear_x
,
shear_y
),
self
.
area_thr
,
self
.
border_value
)
return
shear
(
sample
,
context
)
@
register_op
class
Translate
(
BaseOperator
):
"""Translate image and bboxes
Args:
translate (int, float, list, tuple): if (int, float), translate_x and translate_y are both equal to translate,
if (list, tuple), it means [translate_x, translate_y], translate is the fraction relative to original shape
area_thr (float): the area threshold of bbox to be kept after translation, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def
__init__
(
self
,
translate
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
Translate
,
self
).
__init__
()
if
isinstance
(
translate
,
(
int
,
float
)):
translate
=
(
translate
,
translate
)
elif
isinstance
(
translate
,
list
)
or
isinstance
(
translate
,
tuple
):
assert
len
(
translate
)
==
2
,
'len of translate is not equal to 2'
else
:
raise
ValueError
(
'translate is not reasonable'
)
assert
abs
(
translate
[
0
])
<
1
and
abs
(
translate
[
1
])
<
1
,
'translate should be in (-1, 1)'
self
.
translate
=
translate
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
# translate image
height
,
width
=
im
.
shape
[:
2
]
translate_x
=
int
(
self
.
translate
[
0
]
*
width
)
translate_y
=
int
(
self
.
translate
[
1
]
*
height
)
dst_cords
=
[
max
(
0
,
translate_y
),
max
(
0
,
translate_x
),
min
(
height
,
translate_y
+
height
),
min
(
width
,
translate_x
+
width
)
]
src_cords
=
[
max
(
-
translate_y
,
0
),
max
(
-
translate_x
,
0
),
min
(
-
translate_y
+
height
,
height
),
min
(
-
translate_x
+
width
,
width
)
]
canvas
=
np
.
ones
(
im
.
shape
,
dtype
=
np
.
uint8
)
*
self
.
border_value
canvas
[
dst_cords
[
0
]:
dst_cords
[
2
],
dst_cords
[
1
]:
dst_cords
[
3
],
:]
=
im
[
src_cords
[
0
]:
src_cords
[
2
],
src_cords
[
1
]:
src_cords
[
3
],
:]
if
bbox
.
shape
[
0
]
>
0
:
new_bbox
=
bbox
+
[
translate_x
,
translate_y
,
translate_x
,
translate_y
]
# compute
new_bbox
,
mask
=
clip_bbox
(
new_bbox
,
width
,
height
,
self
.
area_thr
)
new_label
=
label
[
mask
]
else
:
new_bbox
,
new_label
=
bbox
,
label
sample
[
'image'
]
=
canvas
.
astype
(
np
.
uint8
)
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
@
register_op
class
RandomTranslate
(
BaseOperator
):
"""Translate image and bboxes randomly
Args:
translate_x (int, float, list, tuple): if (int, float), translate_x will be unifromly sampled in [-abs(translate_x), abs(translate_x)],
if (list, tuple), translate_x will be unifromly sampled in [translate_x[0], translate_x[1]],
translate_x is the fraction relative to original shape
translate_y (int, float, list, tuple): if (int, float), translate_y will be unifromly sampled in [-abs(translate_y), abs(translate_y)],
if (list, tuple), translate_y will be unifromly sampled in [translate_y[0], translate_y[1]],
translate_y is the fraction relative to original shape
area_thr (float): the area threshold of bbox to be kept after translation, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def
__init__
(
self
,
translate_x
,
translate_y
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
RandomTranslate
,
self
).
__init__
()
if
isinstance
(
translate_x
,
(
int
,
float
)):
translate_x
=
abs
(
translate_x
)
translate_x
=
(
-
translate_x
,
translate_x
)
elif
isinstance
(
translate_x
,
list
)
or
isinstance
(
translate_x
,
tuple
):
assert
len
(
translate_x
)
==
2
,
'len of translate_x is not equal to 2'
else
:
raise
ValueError
(
'translate_x is not reasonable'
)
if
isinstance
(
translate_y
,
(
int
,
float
)):
translate_y
=
abs
(
translate_y
)
translate_y
=
(
-
translate_y
,
translate_y
)
elif
isinstance
(
translate_y
,
list
)
or
isinstance
(
translate_y
,
tuple
):
assert
len
(
translate_y
)
==
2
,
'len of translate_y is not equal to 2'
else
:
raise
ValueError
(
'translate_y is not reasonable'
)
self
.
translate_x
=
translate_x
self
.
translate_y
=
translate_y
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
translate_x
=
random
.
uniform
(
*
self
.
translate_x
)
translate_y
=
random
.
uniform
(
*
self
.
translate_y
)
translate
=
Translate
((
translate_x
,
translate_y
),
self
.
area_thr
,
self
.
border_value
)
return
translate
(
sample
,
context
)
@
register_op
class
Scale
(
BaseOperator
):
"""Scale image and bboxes
Args:
scale (int, float, list, tuple): if (int, float), scale_x and scale_y are both equal to scale,
if (list, tuple), it means [scale_x, scale_y]
area_thr (float): the area threshold of bbox to be kept after scaled, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def
__init__
(
self
,
scale
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
Scale
,
self
).
__init__
()
if
isinstance
(
scale
,
(
int
,
float
)):
scale
=
(
scale
,
scale
)
elif
isinstance
(
scale
,
list
)
or
isinstance
(
scale
,
tuple
):
assert
len
(
scale
)
==
2
,
'len of scale is not equal to 2'
else
:
raise
ValueError
(
'scale is not reasonable'
)
assert
scale
[
0
]
>
0.
and
scale
[
1
]
>
0.
,
'scale should be great than 0'
self
.
scale
=
scale
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
# scale image
height
,
width
=
im
.
shape
[:
2
]
dsize
=
(
int
(
self
.
scale
[
0
]
*
width
),
int
(
self
.
scale
[
1
]
*
height
))
dst_img
=
cv2
.
resize
(
im
,
dsize
)
canvas
=
np
.
ones_like
(
im
,
dtype
=
np
.
uint8
)
*
self
.
border_value
y_lim
=
min
(
height
,
dsize
[
1
])
x_lim
=
min
(
width
,
dsize
[
0
])
canvas
[:
y_lim
,
:
x_lim
,
:]
=
dst_img
[:
y_lim
,
:
x_lim
,
:]
# scale bbox
if
bbox
.
shape
[
0
]
>
0
:
new_bbox
=
bbox
*
[
self
.
scale
[
0
],
self
.
scale
[
1
],
self
.
scale
[
0
],
self
.
scale
[
1
]
]
new_bbox
,
mask
=
clip_bbox
(
new_bbox
,
width
,
height
,
self
.
area_thr
)
new_label
=
label
[
mask
]
else
:
new_bbox
,
new_label
=
bbox
,
label
sample
[
'image'
]
=
canvas
.
astype
(
np
.
uint8
)
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
@
register_op
class
RandomScale
(
BaseOperator
):
"""Scale image and bboxes randomly
Args:
scale_x (int, float, list, tuple): if (int, float), scale_x will be uniformly sampled in [0, scale_x],
if (list, tuple), scale_x will be uniformly sampled in [scale_x[0], scale_x[1]]
scale_y (int, float, list, tuple): if (int, float), scale_y will be uniformly sampled in [0, scale_y],
if (list, tuple), scale_y will be uniformly sampled in [scale_y[0], scale_y[1]]
area_thr (float): the area threshold of bbox to be kept after scaled, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def
__init__
(
self
,
scale_x
,
scale_y
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
RandomScale
,
self
).
__init__
()
if
isinstance
(
scale_x
,
(
int
,
float
)):
assert
scale_x
>
0.
,
'scale_x should be great than 0'
scale_x
=
(
0.
,
scale_x
)
elif
isinstance
(
scale_x
,
list
)
or
isinstance
(
scale_x
,
tuple
):
assert
len
(
scale_x
)
==
2
,
'len of scale_x is not equal to 2'
else
:
raise
ValueError
(
'scale_x is not reasonable'
)
if
isinstance
(
scale_y
,
(
int
,
float
)):
assert
scale_y
>
0.
,
'scale_y should be great than 0'
scale_y
=
(
0.
,
scale_y
)
elif
isinstance
(
scale_y
,
list
)
or
isinstance
(
scale_y
,
tuple
):
assert
len
(
scale_y
)
==
2
,
'len of scale_y is not equal to 2'
else
:
raise
ValueError
(
'scale_y is not reasonable'
)
self
.
scale_x
=
scale_x
self
.
scale_y
=
scale_y
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
scale_x
=
random
.
uniform
(
*
self
.
scale_x
)
scale_y
=
random
.
uniform
(
*
self
.
scale_y
)
scale
=
Scale
((
scale_x
,
scale_y
),
self
.
area_thr
,
self
.
border_value
)
return
scale
(
sample
,
context
)
@
register_op
class
RandomPerspective
(
BaseOperator
):
"""Rotate, tranlate, scale, shear and perspect image and bboxes randomly
Args:
degree (int): rotation degree, uniformly sampled in [-degree, degree]
translate (float): translate fraction, translate_x and translate_y are uniformly sampled
in [0.5 - translate, 0.5 + translate]
scale (float): scale factor, uniformly sampled in [1 - scale, 1 + scale]
shear (int): shear degree, shear_x and shear_y are uniformly sampled in [-shear, shear]
perspective (float): perspective_x and perspective_y are uniformly sampled in [-perspective, perspective]
area_thr (float): the area threshold of bbox to be kept after transformation, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def
__init__
(
self
,
degree
=
10
,
translate
=
0.1
,
scale
=
0.1
,
shear
=
10
,
perspective
=
0.0
,
border
=
(
0
,
0
),
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
RandomPerspective
,
self
).
__init__
()
self
.
degree
=
degree
self
.
translate
=
translate
self
.
scale
=
scale
self
.
shear
=
shear
self
.
perspective
=
perspective
self
.
border
=
border
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
height
=
im
.
shape
[
0
]
+
self
.
border
[
0
]
width
=
im
.
shape
[
1
]
+
self
.
border
[
1
]
# center
C
=
np
.
eye
(
3
)
C
[
0
,
2
]
=
-
im
.
shape
[
1
]
/
2
C
[
1
,
2
]
=
-
im
.
shape
[
0
]
/
2
# perspective
P
=
np
.
eye
(
3
)
P
[
2
,
0
]
=
random
.
uniform
(
-
self
.
perspective
,
self
.
perspective
)
P
[
2
,
1
]
=
random
.
uniform
(
-
self
.
perspective
,
self
.
perspective
)
# Rotation and scale
R
=
np
.
eye
(
3
)
a
=
random
.
uniform
(
-
self
.
degree
,
self
.
degree
)
s
=
random
.
uniform
(
1
-
self
.
scale
,
1
+
self
.
scale
)
R
[:
2
]
=
cv2
.
getRotationMatrix2D
(
angle
=
a
,
center
=
(
0
,
0
),
scale
=
s
)
# Shear
S
=
np
.
eye
(
3
)
# shear x (deg)
S
[
0
,
1
]
=
math
.
tan
(
random
.
uniform
(
-
self
.
shear
,
self
.
shear
)
*
math
.
pi
/
180
)
# shear y (deg)
S
[
1
,
0
]
=
math
.
tan
(
random
.
uniform
(
-
self
.
shear
,
self
.
shear
)
*
math
.
pi
/
180
)
# Translation
T
=
np
.
eye
(
3
)
T
[
0
,
2
]
=
random
.
uniform
(
0.5
-
self
.
translate
,
0.5
+
self
.
translate
)
*
width
T
[
1
,
2
]
=
random
.
uniform
(
0.5
-
self
.
translate
,
0.5
+
self
.
translate
)
*
height
# matmul
# M = T @ S @ R @ P @ C
M
=
np
.
eye
(
3
)
for
cM
in
[
T
,
S
,
R
,
P
,
C
]:
M
=
np
.
matmul
(
M
,
cM
)
if
(
self
.
border
[
0
]
!=
0
)
or
(
self
.
border
[
1
]
!=
0
)
or
(
M
!=
np
.
eye
(
3
)).
any
():
if
self
.
perspective
:
im
=
cv2
.
warpPerspective
(
im
,
M
,
dsize
=
(
width
,
height
),
borderValue
=
self
.
border_value
)
else
:
im
=
cv2
.
warpAffine
(
im
,
M
[:
2
],
dsize
=
(
width
,
height
),
borderValue
=
self
.
border_value
)
if
bbox
.
shape
[
0
]
>
0
:
new_bbox
,
new_label
=
transform_bbox
(
bbox
,
label
,
M
,
width
,
height
,
area_thr
=
self
.
area_thr
,
perspective
=
self
.
perspective
)
else
:
new_bbox
,
new_label
=
bbox
,
label
sample
[
'image'
]
=
im
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
@
register_op
class
RandomHSV
(
BaseOperator
):
def
__init__
(
self
,
hgain
=
0.5
,
sgain
=
0.5
,
vgain
=
0.5
):
super
(
RandomHSV
,
self
).
__init__
()
self
.
gains
=
[
hgain
,
sgain
,
vgain
]
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
r
=
np
.
random
.
uniform
(
-
1
,
1
,
3
)
*
self
.
gains
+
1
hue
,
sat
,
val
=
cv2
.
split
(
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_BGR2HSV
))
x
=
np
.
arange
(
0
,
256
,
dtype
=
np
.
int16
)
lut_hue
=
((
x
*
r
[
0
])
%
180
).
astype
(
np
.
uint8
)
lut_sat
=
np
.
clip
(
x
*
r
[
1
],
0
,
255
).
astype
(
np
.
uint8
)
lut_val
=
np
.
clip
(
x
*
r
[
2
],
0
,
255
).
astype
(
np
.
uint8
)
im_hsv
=
cv2
.
merge
((
cv2
.
LUT
(
hue
,
lut_hue
),
cv2
.
LUT
(
sat
,
lut_sat
),
cv2
.
LUT
(
val
,
lut_val
))).
astype
(
np
.
uint8
)
im
=
cv2
.
cvtColor
(
im_hsv
,
cv2
.
COLOR_HSV2BGR
)
sample
[
'image'
]
=
im
return
sample
@
register_op
class
Mosaic
(
BaseOperator
):
def
__init__
(
self
,
target_size
,
mosaic_border
=
None
,
border_value
=
(
114
,
114
,
114
)):
super
(
Mosaic
,
self
).
__init__
()
self
.
target_size
=
target_size
if
mosaic_border
is
None
:
mosaic_border
=
(
-
target_size
//
2
,
target_size
//
2
)
self
.
mosaic_border
=
mosaic_border
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
s
=
self
.
target_size
ims
,
bboxes
,
labels
=
[
sample
[
'image'
]],
[
sample
[
'gt_bbox'
]
],
[
sample
[
'gt_class'
]]
for
x
in
sample
[
'mosaic'
]:
ims
.
append
(
x
[
'image'
])
bboxes
.
append
(
x
[
'gt_bbox'
])
labels
.
append
(
x
[
'gt_class'
])
yc
,
xc
=
[
int
(
random
.
uniform
(
-
x
,
2
*
s
+
x
))
for
x
in
self
.
mosaic_border
]
new_im
=
np
.
ones
(
(
s
*
2
,
s
*
2
,
ims
[
0
].
shape
[
2
]),
dtype
=
np
.
uint8
)
*
self
.
border_value
n
=
len
(
ims
)
for
i
in
range
(
n
):
im
=
ims
[
i
]
h
,
w
,
_
=
im
.
shape
if
i
==
0
:
# top left
# xmin, ymin, xmax, ymax (dst image)
x1a
,
y1a
,
x2a
,
y2a
=
max
(
xc
-
w
,
0
),
max
(
yc
-
h
,
0
),
xc
,
yc
# xmin, ymin, xmax, ymax (src image)
x1b
,
y1b
,
x2b
,
y2b
=
w
-
(
x2a
-
x1a
),
h
-
(
y2a
-
y1a
),
w
,
h
elif
i
==
1
:
# top right
x1a
,
y1a
,
x2a
,
y2a
=
xc
,
max
(
yc
-
h
,
0
),
min
(
xc
+
w
,
s
*
2
),
yc
x1b
,
y1b
,
x2b
,
y2b
=
0
,
h
-
(
y2a
-
y1a
),
min
(
w
,
x2a
-
x1a
),
h
elif
i
==
2
:
# bottom left
x1a
,
y1a
,
x2a
,
y2a
=
max
(
xc
-
w
,
0
),
yc
,
xc
,
min
(
s
*
2
,
yc
+
h
)
x1b
,
y1b
,
x2b
,
y2b
=
w
-
(
x2a
-
x1a
),
0
,
max
(
xc
,
w
),
min
(
y2a
-
y1a
,
h
)
elif
i
==
3
:
# bottom right
x1a
,
y1a
,
x2a
,
y2a
=
xc
,
yc
,
min
(
xc
+
w
,
s
*
2
),
min
(
s
*
2
,
yc
+
h
)
x1b
,
y1b
,
x2b
,
y2b
=
0
,
0
,
min
(
w
,
x2a
-
x1a
),
min
(
y2a
-
y1a
,
h
)
new_im
[
y1a
:
y2a
,
x1a
:
x2a
]
=
im
[
y1b
:
y2b
,
x1b
:
x2b
]
padw
=
x1a
-
x1b
padh
=
y1a
-
y1b
bboxes
[
i
]
=
bboxes
[
i
]
+
(
padw
,
padh
,
padw
,
padh
)
new_bbox
=
np
.
vstack
(
bboxes
)
new_label
=
np
.
vstack
(
labels
)
sample
[
'image'
]
=
new_im
.
astype
(
np
.
uint8
)
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录