提交 8ce95746 编写于 作者: W wangxinxin08

finish data preprocess ops

上级 2ae4ac30
......@@ -12,22 +12,27 @@ TrainReader:
sample_transforms:
- !DecodeImage
to_rgb: True
# with_mosaic: True
# - !MosaicImage
# offset: 0.3
# mosaic_scale: [0.8, 1.0]
# sample_scale: [0.8, 1.0]
# sample_flip: 0.5
# use_cv2: true
# interp: 2
- !NormalizeBox {}
with_mosaic: True
- !Mosaic
target_size: 640
- !RandomPerspective
degree: 0
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
border: [-320, -320]
- !RandomFlipImage
prob: 0.5
is_normalized: false
- !RandomHSV
hgain: 0.015
sgain: 0.7
vgain: 0.4
- !PadBox
num_max_boxes: 50
- !BboxXYXY2XYWH {}
batch_transforms:
- !RandomShape
sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640]
random_inter: True
- !NormalizeImage
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
......@@ -37,10 +42,6 @@ TrainReader:
to_bgr: false
channel_first: True
# focus: false
- !Gt2YoloTarget
anchor_masks: [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
[59, 119], [116, 90], [156, 198], [373, 326]]
downsample_ratios: [8, 16, 32]
batch_size: 2
mosaic_prob: 0.3
......@@ -49,6 +50,9 @@ TrainReader:
drop_last: true
worker_num: 8
bufsize: 16
target_size: 640
rect: false
pad: 0.5
use_process: true
EvalReader:
......
......@@ -21,6 +21,7 @@ import copy
import functools
import collections
import traceback
import random
import numpy as np
import logging
......@@ -209,7 +210,8 @@ class Reader(object):
memsize='3G',
inputs_def=None,
devices_num=1,
num_trainers=1):
num_trainers=1,
mosaic=False):
self._dataset = dataset
self._roidbs = self._dataset.get_roidb()
if rect:
......@@ -219,9 +221,9 @@ class Reader(object):
s = []
for i, rec in enumerate(self._roidbs):
s.append([rec['h'], rec['w']])
s = np.array(s)
ar = s[:, 0] / s[:, 1] # h / w
ar = s[:, 0] / s[:, 1] # h / w
irect = ar.argsort()
ar = ar[irect]
......@@ -233,16 +235,19 @@ class Reader(object):
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
batch_shapes = np.ceil(np.array(shapes) * target_size / stride + pad) * stride
batch_shapes = np.ceil(
np.array(shapes) * target_size / stride + pad) * stride
new_roidbs = [self._roidbs[j] for j in irect]
self._roidbs = new_roidbs
for i, j in enumerate(bi):
self._roidbs[i].update({'new_shape': batch_shapes[j]})
self._roidbs[i].update({'new_shape': batch_shapes[j]})
self._fields = copy.deepcopy(inputs_def[
'fields']) if inputs_def else None
self.mosaic = mosaic
# transform
self._sample_transforms = Compose(sample_transforms,
{'fields': self._fields})
......@@ -387,6 +392,17 @@ class Reader(object):
if self._load_img:
sample['image'] = self._load_image(sample['im_file'])
if self.mosaic:
sample['mosaic'] = []
for idx in [
random.randint(0, len(self.indexes) - 1)
for _ in range(3)
]:
rec = copy.deepcopy(self._roidbs[idx])
if self._load_img:
rec['image'] = self._load_image(rec['im_file'])
sample['mosaic'].append(rec)
if self._epoch < self._mixup_epoch:
num = len(self.indexes)
mix_idx = np.random.randint(1, num)
......
......@@ -462,3 +462,56 @@ def gaussian2D(shape, sigma_x=1, sigma_y=1):
sigma_y)))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
return h
def transform_bbox(bbox,
label,
M,
w,
h,
area_thr=0.25,
wh_thr=2,
ar_thr=20,
perspective=False):
"""
Transfrom bbox according to tranformation matrix M
"""
# rotate bbox
n = len(bbox)
xy = np.ones((n * 4, 3), dtype=np.float32)
xy[:, :2] = bbox[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2)
# xy = xy @ M.T
xy = np.matmul(xy, M.T)
if perspective:
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8)
else:
xy = xy[:, :2].reshape(n, 8)
# get new bboxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
new_bbox = np.concatenate(
(x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# clip boxes
new_bbox, mask = clip_bbox(new_bbox, w, h, area_thr)
new_label = label[mask]
return new_bbox, new_label
def clip_bbox(bbox, w, h, area_thr=0.25, wh_thr=2, ar_thr=20):
"""
clip bbox according to w and h
"""
# clip boxes
area1 = (bbox[:, 2:4] - bbox[:, 0:2]).prod(1)
bbox[:, [0, 2]] = bbox[:, [0, 2]].clip(0, w)
bbox[:, [1, 3]] = bbox[:, [1, 3]].clip(0, h)
# compute
area2 = (bbox[:, 2:4] - bbox[:, 0:2]).prod(1)
area_ratio = area2 / (area1 + 1e-16)
wh = bbox[:, 2:4] - bbox[:, 0:2]
ar_ratio = np.maximum(wh[:, 1] / (wh[:, 0] + 1e-16),
wh[:, 0] / (wh[:, 1] + 1e-16))
mask = (area_ratio > area_thr) & (
(wh > wh_thr).all(1)) & (ar_ratio < ar_thr)
bbox = bbox[mask]
return bbox, mask
\ No newline at end of file
......@@ -40,11 +40,11 @@ from PIL import Image, ImageEnhance, ImageDraw
from ppdet.core.workspace import serializable
from ppdet.modeling.ops import AnchorGrid
from .op_helper import (satisfy_sample_constraint, filter_and_process,
generate_sample_bbox, clip_bbox, data_anchor_sampling,
satisfy_sample_constraint_coverage, crop_image_sampling,
generate_sample_bbox_square, bbox_area_sampling,
is_poly, gaussian_radius, draw_gaussian)
from .op_helper import (
satisfy_sample_constraint, filter_and_process, generate_sample_bbox,
clip_bbox, data_anchor_sampling, satisfy_sample_constraint_coverage,
crop_image_sampling, generate_sample_bbox_square, bbox_area_sampling,
is_poly, gaussian_radius, draw_gaussian, transform_bbox, clip_bbox)
logger = logging.getLogger(__name__)
......@@ -90,7 +90,11 @@ class BaseOperator(object):
@register_op
class DecodeImage(BaseOperator):
def __init__(self, to_rgb=True, with_mixup=False, with_cutmix=False):
def __init__(self,
to_rgb=True,
with_mixup=False,
with_cutmix=False,
with_mosaic=False):
""" Transform the image data to numpy format.
Args:
to_rgb (bool): whether to convert BGR to RGB
......@@ -102,6 +106,7 @@ class DecodeImage(BaseOperator):
self.to_rgb = to_rgb
self.with_mixup = with_mixup
self.with_cutmix = with_cutmix
self.with_mosaic = with_mosaic
if not isinstance(self.to_rgb, bool):
raise TypeError("{}: input type is invalid.".format(self))
if not isinstance(self.with_mixup, bool):
......@@ -150,7 +155,11 @@ class DecodeImage(BaseOperator):
if self.with_cutmix and 'cutmix' in sample:
self.__call__(sample['cutmix'], context)
# decode semantic label
if self.with_mosaic and 'mosaic' in sample:
for x in sample['mosaic']:
self.__call__(x, context)
# decode semantic label
if 'semantic' in sample.keys() and sample['semantic'] is not None:
sem_file = sample['semantic']
sem = cv2.imread(sem_file, cv2.IMREAD_GRAYSCALE)
......@@ -292,11 +301,11 @@ class ResizeImage(BaseOperator):
self.use_cv2 = use_cv2
if not (isinstance(target_size, int) or isinstance(target_size, list)):
raise TypeError(
"Type of target_size is invalid. Must be Integer or List, now is {}".
format(type(target_size)))
"Type of target_size is invalid. Must be Integer or List, now is {}"
.format(type(target_size)))
self.target_size = target_size
if not (isinstance(self.max_size, int) and isinstance(self.interp,
int)):
if not (isinstance(self.max_size, int) and
isinstance(self.interp, int)):
raise TypeError("{}: input type is invalid.".format(self))
def __call__(self, sample, context=None):
......@@ -372,30 +381,49 @@ class ResizeImage(BaseOperator):
sample['image'] = im
return sample
@register_op
class ResizeAndKeepRatio(BaseOperator):
def __init__(self, target_size, augment=False):
def __init__(self, target_size, augment=False, with_mosaic=False):
super(ResizeAndKeepRatio, self).__init__()
self.target_size = target_size
self.augment = augment
def __call__(self, sample, context=None):
im = sample['image']
bbox = sample['gt_bbox']
h0, w0 = im.shape[:2]
r = self.target_size / max(h0, w0)
if r != 1:
interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
im = cv2.resize(im, (int(w0 * r), int(h0 * r)), interpolation=interp)
im = cv2.resize(
im, (int(w0 * r), int(h0 * r)), interpolation=interp)
bbox = bbox * (r, r, r, r)
bbox = bbox.clip(h0, w0)
sample['image'] = im
sample['im_size'] = [float(h0), float(w0)]
sample['im_scale'] = [1. / r, 1. / r]
sample['gt_bbox'] = bbox
if self.with_mosaic and mosaic in sample:
for x in sample['mosaic']:
self.__call__(x, context)
return sample
@register_op
class LetterBox(BaseOperator):
def __init__(self, target_size, rect=True, color=(114, 114, 114), auto=True, scaleFill=False, augment=True):
def __init__(self,
target_size,
rect=True,
color=(114, 114, 114),
auto=True,
scaleFill=False,
augment=True):
super(LetterBox, self).__init__()
if isinstance(target_size, int):
target_size = (target_size, target_size)
......@@ -405,7 +433,7 @@ class LetterBox(BaseOperator):
self.scaleFill = scaleFill
self.augment = augment
self.rect = rect
def __call__(self, sample, context=None):
im = sample['image']
shape = im.shape[:2]
......@@ -413,16 +441,18 @@ class LetterBox(BaseOperator):
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not self.augment:
r = min(r, 1.0)
ratio = r, r
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[
1] # wh padding
if self.auto: # minimum rectangle
dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
elif self.scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
ratio = new_shape[1] / shape[1], new_shape[0] / shape[
0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
......@@ -431,12 +461,14 @@ class LetterBox(BaseOperator):
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=self.color) # add border
im = cv2.copyMakeBorder(
im, top, bottom, left, right, cv2.BORDER_CONSTANT,
value=self.color) # add border
sample['image'] = im
sample['im_pad'] = [dh, dw]
sample['im_pad'] = [dh, dw]
return sample
@register_op
class RandomFlipImage(BaseOperator):
......@@ -1331,8 +1363,8 @@ class MixupImage(BaseOperator):
if factor <= 0.0:
return sample['mixup']
im = self._mixup_img(sample['image'], sample['mixup']['image'], factor)
gt_bbox1 = sample['gt_bbox'].reshape((-1, 4))
gt_bbox2 = sample['mixup']['gt_bbox'].reshape((-1, 4))
gt_bbox1 = sample['gt_bbox']
gt_bbox2 = sample['mixup']['gt_bbox']
gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
gt_class1 = sample['gt_class']
gt_class2 = sample['mixup']['gt_class']
......@@ -2616,7 +2648,596 @@ class DebugVisibleImage(BaseOperator):
x1 = round(keypoint[2 * j]).astype(np.int32)
y1 = round(keypoint[2 * j + 1]).astype(np.int32)
draw.ellipse(
(x1, y1, x1 + 5, y1 + 5), fill='green', outline='green')
(x1, y1, x1 + 5, y1i + 5),
fill='green',
outline='green')
save_path = os.path.join(self.output_dir, out_file_name)
image.save(save_path, quality=95)
return sample
@register_op
class Rotate(BaseOperator):
"""Rotate image and bboxes
Args:
degree (int, float): the angle of rotation in degrees
scale (float): scale factor
center (tuple): center of the rotation in the source image
area_thr (float): the area threshold of bbox to be kept after rotation, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def __init__(self,
degree,
scale=1.0,
center=None,
area_thr=0.25,
border_value=(114, 114, 114)):
super(Rotate, self).__init__()
self.degree = degree
self.scale = scale
self.center = center
self.area_thr = area_thr
self.border_value = border_value
def __call__(self, sample, context=None):
im = sample['image']
bbox = sample['gt_bbox']
label = sample['gt_class']
# rotate image
height, width = im.shape[:2]
if self.center is None:
self.center = (width // 2, height // 2)
M = cv2.getRotationMatrix2D(self.center, self.degree, self.scale)
im = cv2.warpAffine(
im, M, (width, height), borderValue=self.border_value)
# rotate bbox
if bbox.shape[0] > 0:
new_bbox, new_label = transform_bbox(bbox, label, M, width, height,
self.area_thr)
else:
new_bbox, new_label = bbox, label
sample['image'] = im
sample['gt_bbox'] = new_bbox.astype(np.float32)
sample['gt_class'] = new_label.astype(np.int32)
return sample
@register_op
class RandomRotate(BaseOperator):
"""Rotate image and bboxes randomly
Args:
degree (int, float, list, tuple): if(int, float), the rotation degree will be uniformly sampled uniformly in [-abs(degree), abs(degree)]
if (list, tuple), the rotation degree will be uniformly sampled in [degree[0], degree[1]]
scale (float): the scale factor will be uniformly sampled in [1 - scale, 1 + scale]
center (tuple): center of the rotation in the source image
area_thr (float): the area threshold of bbox to be kept after rotation, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def __init__(self,
degree,
scale=0.0,
center=None,
area_thr=0.25,
border_value=(114, 114, 114)):
super(RandomRotate, self).__init__()
if isinstance(degree, (int, float)):
degree = abs(degree)
degree = (-degree, degree)
elif isinstance(degree, list) or isinstance(degree, tuple):
assert len(degree) == 2, 'len of degree is not equal to 2'
else:
raise ValueError('degree is not reasonable')
self.degree = degree
self.scale = scale
self.center = center
self.area_thr = area_thr
self.border_value = border_value
def __call__(self, sample, context=None):
degree = random.uniform(*self.degree)
scale = random.uniform(1 - self.scale, 1 + self.scale)
rotate = Rotate(degree, scale, self.center, self.area_thr,
self.border_value)
return rotate(sample, context)
@register_op
class Shear(BaseOperator):
"""Shear image and bboxes
Args:
shear (int, float, list, tuple): if (int, float), shear_x and shear_y are both equal to shear,
if (list, tuple), it means [shear_x, shear_y], the shear is in the format of degrees
area_thr (float): the area threshold of bbox to be kept after sheared, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def __init__(self, shear, area_thr=0.25, border_value=(114, 114, 114)):
super(Shear, self).__init__()
if isinstance(shear, (int, float)):
shear = (shear, shear)
elif isinstance(shear, list) or isinstance(shear, tuple):
assert len(shear) == 2, 'len of shear is not equal to 2'
else:
raise ValueError('shear is not reasonable')
self.shear = shear
self.area_thr = area_thr
self.border_value = border_value
def __call__(self, sample, context=None):
im = sample['image']
bbox = sample['gt_bbox']
label = sample['gt_class']
# shear image
height, width = im.shape[:2]
shear_x = math.tan(self.shear[0] * math.pi / 180)
shear_y = math.tan(self.shear[1] * math.pi / 180)
M = np.array([[1, shear_x, 0], [shear_y, 1, 0]])
im = cv2.warpAffine(
im, M, (width, height), borderValue=self.border_value)
# shear box
if bbox.shape[0] > 0:
new_bbox, new_label = transform_bbox(bbox, label, M, width, height,
self.area_thr)
else:
new_bbox, new_label = bbox, label
sample['image'] = im
sample['gt_bbox'] = new_bbox.astype(np.float32)
sample['gt_class'] = new_label.astype(np.int32)
return sample
@register_op
class RandomShear(BaseOperator):
"""Shear image and bboxes randomly
Args:
shear_x (int, float, list, tuple): if (int, float), shear_x will be uniformly sampled in [-abs(shear_x), abs(shear_x)],
if (list, tuple), shear_x will be uniformly sampled in [shear_x[0], shear_x[1]], the shear_x is in the format of degrees
shear_y (int, float, list, tuple): if (int, float), shear_y will be uniformly sampled in [-abs(shear_y), abs(shear_y)],
if (list, tuple), shear_y will be uniformly sampled in [shear_y[0], shear_y[1]], the shear_y is in the format of degrees
area_thr (float): the area threshold of bbox to be kept after sheared, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def __init__(self,
shear_x,
shear_y,
area_thr=0.25,
border_value=(114, 114, 114)):
super(RandomShear, self).__init__()
if isinstance(shear_x, (int, float)):
shear_x = abs(shear_x)
shear_x = (-shear_x, shear_x)
elif isinstance(shear_x, list) or isinstance(shear_x, tuple):
assert len(shear_x) == 2, 'len of shear_x is not equal to 2'
else:
raise ValueError('shear_x is not reasonable')
if isinstance(shear_y, (int, float)):
shear_y = abs(shear_y)
shear_y = (-shear_y, shear_y)
elif isinstance(shear_y, list) or isinstance(shear_y, tuple):
assert len(shear_y) == 2, 'len of shear_y is not equal to 2'
else:
raise ValueError('shear_y is not reasonable')
self.shear_x = shear_x
self.shear_y = shear_y
self.area_thr = area_thr
self.border_value = border_value
def __call__(self, sample, context=None):
shear_x = random.uniform(*self.shear_x)
shear_y = random.uniform(*self.shear_y)
shear = Shear((shear_x, shear_y), self.area_thr, self.border_value)
return shear(sample, context)
@register_op
class Translate(BaseOperator):
"""Translate image and bboxes
Args:
translate (int, float, list, tuple): if (int, float), translate_x and translate_y are both equal to translate,
if (list, tuple), it means [translate_x, translate_y], translate is the fraction relative to original shape
area_thr (float): the area threshold of bbox to be kept after translation, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def __init__(self, translate, area_thr=0.25, border_value=(114, 114, 114)):
super(Translate, self).__init__()
if isinstance(translate, (int, float)):
translate = (translate, translate)
elif isinstance(translate, list) or isinstance(translate, tuple):
assert len(translate) == 2, 'len of translate is not equal to 2'
else:
raise ValueError('translate is not reasonable')
assert abs(translate[0]) < 1 and abs(translate[
1]) < 1, 'translate should be in (-1, 1)'
self.translate = translate
self.area_thr = area_thr
self.border_value = border_value
def __call__(self, sample, context=None):
im = sample['image']
bbox = sample['gt_bbox']
label = sample['gt_class']
# translate image
height, width = im.shape[:2]
translate_x = int(self.translate[0] * width)
translate_y = int(self.translate[1] * height)
dst_cords = [
max(0, translate_y), max(0, translate_x),
min(height, translate_y + height), min(width, translate_x + width)
]
src_cords = [
max(-translate_y, 0), max(-translate_x, 0),
min(-translate_y + height, height), min(-translate_x + width, width)
]
canvas = np.ones(im.shape, dtype=np.uint8) * self.border_value
canvas[dst_cords[0]:dst_cords[2], dst_cords[1]:dst_cords[3], :] = im[
src_cords[0]:src_cords[2], src_cords[1]:src_cords[3], :]
if bbox.shape[0] > 0:
new_bbox = bbox + [
translate_x, translate_y, translate_x, translate_y
]
# compute
new_bbox, mask = clip_bbox(new_bbox, width, height, self.area_thr)
new_label = label[mask]
else:
new_bbox, new_label = bbox, label
sample['image'] = canvas.astype(np.uint8)
sample['gt_bbox'] = new_bbox.astype(np.float32)
sample['gt_class'] = new_label.astype(np.int32)
return sample
@register_op
class RandomTranslate(BaseOperator):
"""Translate image and bboxes randomly
Args:
translate_x (int, float, list, tuple): if (int, float), translate_x will be unifromly sampled in [-abs(translate_x), abs(translate_x)],
if (list, tuple), translate_x will be unifromly sampled in [translate_x[0], translate_x[1]],
translate_x is the fraction relative to original shape
translate_y (int, float, list, tuple): if (int, float), translate_y will be unifromly sampled in [-abs(translate_y), abs(translate_y)],
if (list, tuple), translate_y will be unifromly sampled in [translate_y[0], translate_y[1]],
translate_y is the fraction relative to original shape
area_thr (float): the area threshold of bbox to be kept after translation, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def __init__(self,
translate_x,
translate_y,
area_thr=0.25,
border_value=(114, 114, 114)):
super(RandomTranslate, self).__init__()
if isinstance(translate_x, (int, float)):
translate_x = abs(translate_x)
translate_x = (-translate_x, translate_x)
elif isinstance(translate_x, list) or isinstance(translate_x, tuple):
assert len(translate_x) == 2, 'len of translate_x is not equal to 2'
else:
raise ValueError('translate_x is not reasonable')
if isinstance(translate_y, (int, float)):
translate_y = abs(translate_y)
translate_y = (-translate_y, translate_y)
elif isinstance(translate_y, list) or isinstance(translate_y, tuple):
assert len(translate_y) == 2, 'len of translate_y is not equal to 2'
else:
raise ValueError('translate_y is not reasonable')
self.translate_x = translate_x
self.translate_y = translate_y
self.area_thr = area_thr
self.border_value = border_value
def __call__(self, sample, context=None):
translate_x = random.uniform(*self.translate_x)
translate_y = random.uniform(*self.translate_y)
translate = Translate((translate_x, translate_y), self.area_thr,
self.border_value)
return translate(sample, context)
@register_op
class Scale(BaseOperator):
"""Scale image and bboxes
Args:
scale (int, float, list, tuple): if (int, float), scale_x and scale_y are both equal to scale,
if (list, tuple), it means [scale_x, scale_y]
area_thr (float): the area threshold of bbox to be kept after scaled, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def __init__(self, scale, area_thr=0.25, border_value=(114, 114, 114)):
super(Scale, self).__init__()
if isinstance(scale, (int, float)):
scale = (scale, scale)
elif isinstance(scale, list) or isinstance(scale, tuple):
assert len(scale) == 2, 'len of scale is not equal to 2'
else:
raise ValueError('scale is not reasonable')
assert scale[0] > 0. and scale[1] > 0., 'scale should be great than 0'
self.scale = scale
self.area_thr = area_thr
self.border_value = border_value
def __call__(self, sample, context=None):
im = sample['image']
bbox = sample['gt_bbox']
label = sample['gt_class']
# scale image
height, width = im.shape[:2]
dsize = (int(self.scale[0] * width), int(self.scale[1] * height))
dst_img = cv2.resize(im, dsize)
canvas = np.ones_like(im, dtype=np.uint8) * self.border_value
y_lim = min(height, dsize[1])
x_lim = min(width, dsize[0])
canvas[:y_lim, :x_lim, :] = dst_img[:y_lim, :x_lim, :]
# scale bbox
if bbox.shape[0] > 0:
new_bbox = bbox * [
self.scale[0], self.scale[1], self.scale[0], self.scale[1]
]
new_bbox, mask = clip_bbox(new_bbox, width, height, self.area_thr)
new_label = label[mask]
else:
new_bbox, new_label = bbox, label
sample['image'] = canvas.astype(np.uint8)
sample['gt_bbox'] = new_bbox.astype(np.float32)
sample['gt_class'] = new_label.astype(np.int32)
return sample
@register_op
class RandomScale(BaseOperator):
"""Scale image and bboxes randomly
Args:
scale_x (int, float, list, tuple): if (int, float), scale_x will be uniformly sampled in [0, scale_x],
if (list, tuple), scale_x will be uniformly sampled in [scale_x[0], scale_x[1]]
scale_y (int, float, list, tuple): if (int, float), scale_y will be uniformly sampled in [0, scale_y],
if (list, tuple), scale_y will be uniformly sampled in [scale_y[0], scale_y[1]]
area_thr (float): the area threshold of bbox to be kept after scaled, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def __init__(self,
scale_x,
scale_y,
area_thr=0.25,
border_value=(114, 114, 114)):
super(RandomScale, self).__init__()
if isinstance(scale_x, (int, float)):
assert scale_x > 0., 'scale_x should be great than 0'
scale_x = (0., scale_x)
elif isinstance(scale_x, list) or isinstance(scale_x, tuple):
assert len(scale_x) == 2, 'len of scale_x is not equal to 2'
else:
raise ValueError('scale_x is not reasonable')
if isinstance(scale_y, (int, float)):
assert scale_y > 0., 'scale_y should be great than 0'
scale_y = (0., scale_y)
elif isinstance(scale_y, list) or isinstance(scale_y, tuple):
assert len(scale_y) == 2, 'len of scale_y is not equal to 2'
else:
raise ValueError('scale_y is not reasonable')
self.scale_x = scale_x
self.scale_y = scale_y
self.area_thr = area_thr
self.border_value = border_value
def __call__(self, sample, context=None):
scale_x = random.uniform(*self.scale_x)
scale_y = random.uniform(*self.scale_y)
scale = Scale((scale_x, scale_y), self.area_thr, self.border_value)
return scale(sample, context)
@register_op
class RandomPerspective(BaseOperator):
"""Rotate, tranlate, scale, shear and perspect image and bboxes randomly
Args:
degree (int): rotation degree, uniformly sampled in [-degree, degree]
translate (float): translate fraction, translate_x and translate_y are uniformly sampled
in [0.5 - translate, 0.5 + translate]
scale (float): scale factor, uniformly sampled in [1 - scale, 1 + scale]
shear (int): shear degree, shear_x and shear_y are uniformly sampled in [-shear, shear]
perspective (float): perspective_x and perspective_y are uniformly sampled in [-perspective, perspective]
area_thr (float): the area threshold of bbox to be kept after transformation, default 0.25
border_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def __init__(self,
degree=10,
translate=0.1,
scale=0.1,
shear=10,
perspective=0.0,
border=(0, 0),
area_thr=0.25,
border_value=(114, 114, 114)):
super(RandomPerspective, self).__init__()
self.degree = degree
self.translate = translate
self.scale = scale
self.shear = shear
self.perspective = perspective
self.border = border
self.area_thr = area_thr
self.border_value = border_value
def __call__(self, sample, context=None):
im = sample['image']
bbox = sample['gt_bbox']
label = sample['gt_class']
height = im.shape[0] + self.border[0]
width = im.shape[1] + self.border[1]
# center
C = np.eye(3)
C[0, 2] = -im.shape[1] / 2
C[1, 2] = -im.shape[0] / 2
# perspective
P = np.eye(3)
P[2, 0] = random.uniform(-self.perspective, self.perspective)
P[2, 1] = random.uniform(-self.perspective, self.perspective)
# Rotation and scale
R = np.eye(3)
a = random.uniform(-self.degree, self.degree)
s = random.uniform(1 - self.scale, 1 + self.scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
# Shear
S = np.eye(3)
# shear x (deg)
S[0, 1] = math.tan(
random.uniform(-self.shear, self.shear) * math.pi / 180)
# shear y (deg)
S[1, 0] = math.tan(
random.uniform(-self.shear, self.shear) * math.pi / 180)
# Translation
T = np.eye(3)
T[0, 2] = random.uniform(0.5 - self.translate,
0.5 + self.translate) * width
T[1, 2] = random.uniform(0.5 - self.translate,
0.5 + self.translate) * height
# matmul
# M = T @ S @ R @ P @ C
M = np.eye(3)
for cM in [T, S, R, P, C]:
M = np.matmul(M, cM)
if (self.border[0] != 0) or (self.border[1] != 0) or (
M != np.eye(3)).any():
if self.perspective:
im = cv2.warpPerspective(
im, M, dsize=(width, height), borderValue=self.border_value)
else:
im = cv2.warpAffine(
im,
M[:2],
dsize=(width, height),
borderValue=self.border_value)
if bbox.shape[0] > 0:
new_bbox, new_label = transform_bbox(
bbox,
label,
M,
width,
height,
area_thr=self.area_thr,
perspective=self.perspective)
else:
new_bbox, new_label = bbox, label
sample['image'] = im
sample['gt_bbox'] = new_bbox.astype(np.float32)
sample['gt_class'] = new_label.astype(np.int32)
return sample
@register_op
class RandomHSV(BaseOperator):
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5):
super(RandomHSV, self).__init__()
self.gains = [hgain, sgain, vgain]
def __call__(self, sample, context=None):
im = sample['image']
r = np.random.uniform(-1, 1, 3) * self.gains + 1
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
x = np.arange(0, 256, dtype=np.int16)
lut_hue = ((x * r[0]) % 180).astype(np.uint8)
lut_sat = np.clip(x * r[1], 0, 255).astype(np.uint8)
lut_val = np.clip(x * r[2], 0, 255).astype(np.uint8)
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat),
cv2.LUT(val, lut_val))).astype(np.uint8)
im = cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR)
sample['image'] = im
return sample
@register_op
class Mosaic(BaseOperator):
def __init__(self,
target_size,
mosaic_border=None,
border_value=(114, 114, 114)):
super(Mosaic, self).__init__()
self.target_size = target_size
if mosaic_border is None:
mosaic_border = (-target_size // 2, target_size // 2)
self.mosaic_border = mosaic_border
self.border_value = border_value
def __call__(self, sample, context=None):
s = self.target_size
ims, bboxes, labels = [sample['image']], [sample['gt_bbox']
], [sample['gt_class']]
for x in sample['mosaic']:
ims.append(x['image'])
bboxes.append(x['gt_bbox'])
labels.append(x['gt_class'])
yc, xc = [
int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border
]
new_im = np.ones(
(s * 2, s * 2, ims[0].shape[2]), dtype=np.uint8) * self.border_value
n = len(ims)
for i in range(n):
im = ims[i]
h, w, _ = im.shape
if i == 0: # top left
# xmin, ymin, xmax, ymax (dst image)
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc
# xmin, ymin, xmax, ymax (src image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(
y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2,
yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
new_im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b]
padw = x1a - x1b
padh = y1a - y1b
bboxes[i] = bboxes[i] + (padw, padh, padw, padh)
new_bbox = np.vstack(bboxes)
new_label = np.vstack(labels)
sample['image'] = new_im.astype(np.uint8)
sample['gt_bbox'] = new_bbox.astype(np.float32)
sample['gt_class'] = new_label.astype(np.int32)
return sample
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册