Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8b9d33fa
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8b9d33fa
编写于
12月 12, 2018
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add unittest and fix bug
add API.spec test=develop
上级
e240ba29
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
374 addition
and
137 deletion
+374
-137
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/py_func_op.cc
paddle/fluid/operators/py_func_op.cc
+81
-42
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+147
-95
python/paddle/fluid/tests/unittests/test_py_func_op.py
python/paddle/fluid/tests/unittests/test_py_func_op.py
+145
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
8b9d33fa
...
@@ -197,6 +197,7 @@ paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act
...
@@ -197,6 +197,7 @@ paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act
paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.py_func ArgSpec(args=['func', 'x', 'out', 'backward_func', 'skip_vars_in_backward_input'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/operators/py_func_op.cc
浏览文件 @
8b9d33fa
...
@@ -26,26 +26,35 @@ namespace py = pybind11;
...
@@ -26,26 +26,35 @@ namespace py = pybind11;
static
std
::
vector
<
py
::
object
>
g_py_callables
;
static
std
::
vector
<
py
::
object
>
g_py_callables
;
const
char
kForwardPythonCallableId
[]
=
"forward_callable_id"
;
const
char
kBackwardPythonCallableId
[]
=
"backward_callable_id"
;
const
char
kPyFuncBackwardSkipVars
[]
=
"backward_skip_vars"
;
size_t
AppendPythonCallableObjectAndReturnId
(
py
::
object
py_obj
)
{
size_t
AppendPythonCallableObjectAndReturnId
(
py
::
object
py_obj
)
{
g_py_callables
.
emplace_back
(
py_obj
);
g_py_callables
.
emplace_back
(
py_obj
);
return
g_py_callables
.
size
()
-
1
;
return
g_py_callables
.
size
()
-
1
;
}
}
static
py
::
object
*
GetPythonCallableObject
(
size_t
i
)
{
static
py
::
object
*
GetPythonCallableObject
(
size_t
i
)
{
PADDLE_ENFORCE_LT
(
i
,
g_py_callables
.
size
());
PADDLE_ENFORCE_LT
(
i
,
g_py_callables
.
size
()
,
"Invalid python callable id"
);
return
&
g_py_callables
[
i
];
return
&
g_py_callables
[
i
];
}
}
void
CallPythonFunc
(
py
::
object
*
callable
,
const
std
::
string
&
func_token
,
std
::
string
PythonObjectToString
(
const
py
::
object
&
py_callable
)
{
py
::
gil_scoped_acquire
guard
;
return
py
::
str
(
*
py_callable
);
}
void
CallPythonFunc
(
py
::
object
*
callable
,
const
std
::
vector
<
framework
::
LoDTensor
>
&
ins
,
const
std
::
vector
<
framework
::
LoDTensor
>
&
ins
,
std
::
vector
<
framework
::
LoDTensor
*>
*
out
)
{
std
::
vector
<
framework
::
LoDTensor
*>
*
out
)
{
py
::
gil_scoped_acquire
guard
{}
;
py
::
gil_scoped_acquire
guard
;
py
::
tuple
in_args
(
ins
.
size
());
py
::
tuple
in_args
(
ins
.
size
());
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
in_args
[
i
]
=
ins
[
i
].
IsInitialized
()
?
py
::
cast
(
ins
[
i
])
:
py
::
cast
(
nullptr
);
in_args
[
i
]
=
ins
[
i
].
IsInitialized
()
?
py
::
cast
(
ins
[
i
])
:
py
::
cast
(
nullptr
);
}
}
auto
ret
=
(
*
callable
)(
func_token
,
*
in_args
);
auto
ret
=
(
*
callable
)(
*
in_args
);
auto
ret_tuple
=
py
::
cast
<
py
::
tuple
>
(
ret
);
auto
ret_tuple
=
py
::
cast
<
py
::
tuple
>
(
ret
);
PADDLE_ENFORCE_EQ
(
py
::
len
(
ret_tuple
),
out
->
size
(),
"Output number not match"
);
PADDLE_ENFORCE_EQ
(
py
::
len
(
ret_tuple
),
out
->
size
(),
"Output number not match"
);
for
(
size_t
i
=
0
;
i
<
out
->
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
out
->
size
();
++
i
)
{
...
@@ -55,7 +64,7 @@ void CallPythonFunc(py::object *callable, const std::string &func_token,
...
@@ -55,7 +64,7 @@ void CallPythonFunc(py::object *callable, const std::string &func_token,
try
{
try
{
auto
*
out_tensor
=
py
::
cast
<
framework
::
LoDTensor
*>
(
ret_tuple
[
i
]);
auto
*
out_tensor
=
py
::
cast
<
framework
::
LoDTensor
*>
(
ret_tuple
[
i
]);
PADDLE_ENFORCE_NOT_NULL
(
out_tensor
,
PADDLE_ENFORCE_NOT_NULL
(
out_tensor
,
"Output tensor
should not be nullptr"
);
"Output tensor
%d should not be nullptr"
,
i
);
(
*
out
)[
i
]
->
set_lod
(
out_tensor
->
lod
());
(
*
out
)[
i
]
->
set_lod
(
out_tensor
->
lod
());
(
*
out
)[
i
]
->
ShareDataWith
(
*
out_tensor
);
(
*
out
)[
i
]
->
ShareDataWith
(
*
out_tensor
);
}
catch
(
py
::
cast_error
&
)
{
}
catch
(
py
::
cast_error
&
)
{
...
@@ -69,26 +78,23 @@ class PyFuncOpShapeInference : public framework::InferShapeBase {
...
@@ -69,26 +78,23 @@ class PyFuncOpShapeInference : public framework::InferShapeBase {
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
!
ctx
->
IsRuntime
(),
PADDLE_ENFORCE
(
!
ctx
->
IsRuntime
(),
"Infer shape cannot be called in runtime."
);
"Infer shape cannot be called in runtime."
);
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
"X"
),
"Input(X) must exist"
);
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
"X"
)
||
ctx
->
HasOutputs
(
"Out"
),
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
"Out"
),
"Output(Out) must exist"
);
"Input(X) or Output(Out) must exist"
);
PADDLE_ENFORCE_GE
(
ctx
->
Attrs
().
Get
<
int
>
(
kForwardPythonCallableId
),
0
,
"Function id cannot be less than 0"
);
auto
*
op
=
boost
::
get
<
const
framework
::
OpDesc
*>
(
ctx
->
GetOp
());
auto
*
op
=
boost
::
get
<
const
framework
::
OpDesc
*>
(
ctx
->
GetOp
());
auto
*
block
=
op
->
Block
();
auto
*
block
=
op
->
Block
();
// No need to infer shape in forward part
if
(
block
->
ForwardBlockID
()
<
0
)
{
return
;
}
PADDLE_ENFORCE
(
!
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"token"
).
empty
(),
"Function token cannot be empty"
);
const
std
::
string
kGradVarSuffix
=
framework
::
kGradVarSuffix
;
const
std
::
string
kGradVarSuffix
=
framework
::
kGradVarSuffix
;
auto
out_vars
=
ctx
->
GetOutputVarPtrs
(
"Out"
);
auto
out_vars
=
ctx
->
GetOutputVarPtrs
(
"Out"
);
for
(
auto
&
out_var
:
out_vars
)
{
for
(
auto
&
out_var
:
out_vars
)
{
auto
*
out_var_desc
=
boost
::
get
<
framework
::
VarDesc
*>
(
out_var
);
auto
*
out_var_desc
=
boost
::
get
<
framework
::
VarDesc
*>
(
out_var
);
if
(
out_var_desc
==
nullptr
)
{
continue
;
}
auto
out_name
=
out_var_desc
->
Name
();
auto
out_name
=
out_var_desc
->
Name
();
if
(
out_name
==
framework
::
kEmptyVarName
||
if
(
out_name
==
framework
::
kEmptyVarName
||
out_name
.
size
()
<
kGradVarSuffix
.
size
())
{
out_name
.
size
()
<
=
kGradVarSuffix
.
size
())
{
continue
;
continue
;
}
}
...
@@ -98,6 +104,8 @@ class PyFuncOpShapeInference : public framework::InferShapeBase {
...
@@ -98,6 +104,8 @@ class PyFuncOpShapeInference : public framework::InferShapeBase {
auto
*
in_var_desc
=
block
->
FindVarRecursive
(
fwd_var_name
);
auto
*
in_var_desc
=
block
->
FindVarRecursive
(
fwd_var_name
);
PADDLE_ENFORCE_NOT_NULL
(
in_var_desc
,
"Forward variable %s not found"
,
PADDLE_ENFORCE_NOT_NULL
(
in_var_desc
,
"Forward variable %s not found"
,
fwd_var_name
);
fwd_var_name
);
VLOG
(
10
)
<<
"Infer shape of Out("
<<
out_name
<<
") as Input("
<<
in_var_desc
->
Name
()
<<
")"
;
out_var_desc
->
SetShape
(
in_var_desc
->
GetShape
());
out_var_desc
->
SetShape
(
in_var_desc
->
GetShape
());
out_var_desc
->
SetDataType
(
in_var_desc
->
GetDataType
());
out_var_desc
->
SetDataType
(
in_var_desc
->
GetDataType
());
out_var_desc
->
SetLoDLevel
(
in_var_desc
->
GetLoDLevel
());
out_var_desc
->
SetLoDLevel
(
in_var_desc
->
GetLoDLevel
());
...
@@ -112,13 +120,15 @@ class PyFuncOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -112,13 +120,15 @@ class PyFuncOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"X"
,
"Inputs of py_func op."
).
AsDuplicable
();
AddInput
(
"X"
,
"Inputs of py_func op."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"Outputs of py_func op"
).
AsDuplicable
();
AddOutput
(
"Out"
,
"Outputs of py_func op"
).
AsDuplicable
();
AddAttr
<
int
>
(
"handle_idx"
,
"Index of the registered py_func handle"
)
AddAttr
<
int
>
(
kForwardPythonCallableId
,
"Index of registered forward Python function."
)
.
SetDefault
(
0
);
.
SetDefault
(
0
);
AddAttr
<
std
::
string
>
(
"token"
,
"Token of function token to be called"
)
AddAttr
<
int
>
(
kBackwardPythonCallableId
,
.
SetDefault
(
""
);
"Index of registered backward Python function"
)
AddAttr
<
std
::
string
>
(
"backward_token"
,
.
SetDefault
(
-
1
);
"Token of backward function to be called"
)
AddAttr
<
std
::
vector
<
std
::
string
>>
(
kPyFuncBackwardSkipVars
,
.
SetDefault
(
""
);
"Unused forward in/out in backward op"
)
.
SetDefault
(
std
::
vector
<
std
::
string
>
());
AddComment
(
R"DOC("PyFunc Op")DOC"
);
AddComment
(
R"DOC("PyFunc Op")DOC"
);
}
}
};
};
...
@@ -129,7 +139,8 @@ class PyFuncOpGradDescMaker : public framework::GradOpDescMakerBase {
...
@@ -129,7 +139,8 @@ class PyFuncOpGradDescMaker : public framework::GradOpDescMakerBase {
std
::
vector
<
std
::
unique_ptr
<
framework
::
OpDesc
>>
operator
()()
const
override
{
std
::
vector
<
std
::
unique_ptr
<
framework
::
OpDesc
>>
operator
()()
const
override
{
auto
&
fwd_attrs
=
Attrs
();
auto
&
fwd_attrs
=
Attrs
();
if
(
fwd_attrs
.
at
(
"backward_token"
).
empty
())
{
// no backward op when backward_id is less than 0
if
(
boost
::
get
<
int
>
(
fwd_attrs
.
at
(
kBackwardPythonCallableId
))
<
0
)
{
return
{};
return
{};
}
}
...
@@ -137,36 +148,65 @@ class PyFuncOpGradDescMaker : public framework::GradOpDescMakerBase {
...
@@ -137,36 +148,65 @@ class PyFuncOpGradDescMaker : public framework::GradOpDescMakerBase {
grad_op
->
SetType
(
"py_func"
);
grad_op
->
SetType
(
"py_func"
);
framework
::
AttributeMap
bwd_attrs
;
framework
::
AttributeMap
bwd_attrs
;
bwd_attrs
[
"token"
]
=
fwd_attrs
.
at
(
"backward_token"
);
bwd_attrs
[
kForwardPythonCallableId
]
=
bwd_attrs
[
"backward_token"
]
=
std
::
string
(
""
);
fwd_attrs
.
at
(
kBackwardPythonCallableId
);
bwd_attrs
[
kBackwardPythonCallableId
]
=
-
1
;
grad_op
->
SetAttrMap
(
bwd_attrs
);
grad_op
->
SetAttrMap
(
bwd_attrs
);
auto
bwd_in
=
Input
(
"X"
);
// All forward inputs
auto
fwd_out
=
Output
(
"Out"
);
auto
fwd_ins
=
Input
(
"X"
);
auto
fwd_out_grad
=
OutputGrad
(
"Out"
);
// All forward outputs
bwd_in
.
insert
(
bwd_in
.
end
(),
fwd_out
.
begin
(),
fwd_out
.
end
());
auto
fwd_outs
=
Output
(
"Out"
);
bwd_in
.
insert
(
bwd_in
.
end
(),
fwd_out_grad
.
begin
(),
fwd_out_grad
.
end
());
// For memory reused, some inputs/output in forward part may be not needed
// in backward part
// Just skip these vars
auto
&
backward_skip_var_list
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
fwd_attrs
.
at
(
kPyFuncBackwardSkipVars
));
std
::
unordered_set
<
std
::
string
>
backward_skip_var_set
(
backward_skip_var_list
.
begin
(),
backward_skip_var_list
.
end
());
std
::
vector
<
std
::
string
>
bwd_ins
;
bwd_ins
.
reserve
(
fwd_ins
.
size
()
+
fwd_outs
.
size
());
for
(
auto
&
fwd_in
:
fwd_ins
)
{
if
(
backward_skip_var_set
.
count
(
fwd_in
)
==
0
)
{
bwd_ins
.
emplace_back
(
fwd_in
);
}
}
for
(
auto
&
fwd_out
:
fwd_outs
)
{
if
(
backward_skip_var_set
.
count
(
fwd_out
)
==
0
)
{
bwd_ins
.
emplace_back
(
fwd_out
);
}
}
// Backward OG cannot be skipped
// But in Python side, if OG is kEmptyVarName, input tensor would be None
auto
fwd_out_grads
=
OutputGrad
(
"Out"
);
bwd_ins
.
reserve
(
bwd_ins
.
size
()
+
fwd_out_grads
.
size
());
bwd_ins
.
insert
(
bwd_ins
.
end
(),
fwd_out_grads
.
begin
(),
fwd_out_grads
.
end
());
auto
bwd_out
=
InputGrad
(
"X"
,
false
);
// Backward IG cannot be skipped
// But in Python side, if IG is not needed, users can just return None
auto
bwd_outs
=
InputGrad
(
"X"
,
false
);
if
(
VLOG_IS_ON
(
10
))
{
if
(
VLOG_IS_ON
(
10
))
{
std
::
string
in_str
=
"PyFunc Grad Input: "
;
std
::
string
in_str
=
"PyFunc Grad Input: "
;
for
(
auto
&
in
:
bwd_in
)
{
for
(
auto
&
in
:
bwd_in
s
)
{
in_str
+=
in
;
in_str
+=
in
;
in_str
+=
" "
;
in_str
+=
" "
;
}
}
VLOG
(
10
)
<<
in_str
;
VLOG
(
10
)
<<
in_str
;
std
::
string
out_str
=
"PyFunc Grad Output: "
;
std
::
string
out_str
=
"PyFunc Grad Output: "
;
for
(
auto
&
out
:
bwd_out
)
{
for
(
auto
&
out
:
bwd_out
s
)
{
out_str
+=
out
;
out_str
+=
out
;
out
+=
" "
;
out
_str
+=
" "
;
}
}
VLOG
(
10
)
<<
out_str
;
VLOG
(
10
)
<<
out_str
;
}
}
grad_op
->
SetInput
(
"X"
,
bwd_in
);
grad_op
->
SetInput
(
"X"
,
bwd_in
s
);
grad_op
->
SetOutput
(
"Out"
,
InputGrad
(
"X"
,
false
)
);
grad_op
->
SetOutput
(
"Out"
,
bwd_outs
);
std
::
vector
<
std
::
unique_ptr
<
framework
::
OpDesc
>>
ret
(
1
);
std
::
vector
<
std
::
unique_ptr
<
framework
::
OpDesc
>>
ret
(
1
);
ret
[
0
]
=
std
::
move
(
grad_op
);
ret
[
0
]
=
std
::
move
(
grad_op
);
...
@@ -210,12 +250,11 @@ class PyFuncOp : public framework::OperatorBase {
...
@@ -210,12 +250,11 @@ class PyFuncOp : public framework::OperatorBase {
outputs
[
i
]
=
out_tensor
;
outputs
[
i
]
=
out_tensor
;
}
}
auto
&
token
=
Attr
<
std
::
string
>
(
"token"
);
auto
callable_id
=
static_cast
<
size_t
>
(
Attr
<
int
>
(
kForwardPythonCallableId
));
auto
handle_idx
=
static_cast
<
size_t
>
(
Attr
<
int
>
(
"handle_idx"
));
auto
*
py_callable
=
GetPythonCallableObject
(
callable_id
);
auto
*
py_callable
=
GetPythonCallableObject
(
handle_idx
);
VLOG
(
10
)
<<
"Call py_func_op with id "
<<
callable_id
<<
": "
VLOG
(
10
)
<<
"Call py_func_op with token "
<<
token
<<
", and handle_idx "
<<
PythonObjectToString
(
*
py_callable
);
<<
handle_idx
;
CallPythonFunc
(
py_callable
,
inputs
,
&
outputs
);
CallPythonFunc
(
py_callable
,
token
,
inputs
,
&
outputs
);
}
}
};
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
8b9d33fa
...
@@ -9087,104 +9087,140 @@ def get_tensor_from_selected_rows(x, name=None):
...
@@ -9087,104 +9087,140 @@ def get_tensor_from_selected_rows(x, name=None):
return
out
return
out
@
templatedoc
()
class
PyFuncWrapper
(
object
):
def
py_func
(
func
,
x
,
out
,
backward_func
=
None
):
_register_funcs
=
[]
"""
"""
def
__init__
(
self
,
func
):
if
func
is
None
or
not
hasattr
(
func
,
'__call__'
):
class
PyFuncRegister
(
object
):
raise
TypeError
(
'func must be a Python function'
)
_main_program_to_register
=
dict
()
self
.
_func
=
func
@
classmethod
# find named args using reflection
def
get_instance
(
cls
,
prog
):
self
.
_named_args
=
inspect
.
getargspec
(
self
.
_func
)[
0
]
if
not
isinstance
(
prog
,
Program
):
self
.
_id
=
core
.
append_python_callable_object_and_return_id
(
self
)
raise
TypeError
(
"prog must be type of Program"
)
'''
Why record self here?
ret
=
cls
.
_main_program_to_register
.
get
(
prog
,
None
)
if
ret
is
None
:
1. For debug usage. Users can call
ret
=
PyFuncRegister
()
:code:`py_func.registered_func(idx)` method
ret
.
_idx
=
core
.
append_python_callable_object_and_return_id
(
ret
)
to find the registered function coresponding
ret
.
_token_func_dict
=
dict
()
to :code:`idx`.
ret
.
_func_token_dict
=
dict
()
cls
.
_main_program_to_register
[
prog
]
=
ret
2. For increasing reference count of self.
It seems that to release Python object
return
ret
whose reference count is 1 would cause
segmentation fault error in C++ side.
@
property
May be lack of Python GC in C++ side?
def
handle_idx
(
self
):
'''
return
self
.
_idx
PyFuncWrapper
.
_register_funcs
.
append
(
self
)
def
unique_token
(
self
,
func
):
@
classmethod
return
self
.
_register_func
(
func
)
def
registered_func
(
cls
,
idx
):
return
cls
.
_register_funcs
[
idx
].
_func
def
_register_func
(
self
,
func
):
if
func
is
None
:
@
classmethod
raise
ValueError
(
"func cannot be None"
)
def
registered_func_num
(
cls
):
return
len
(
cls
.
_register_funcs
)
token
=
self
.
_func_token_dict
.
get
(
func
,
None
)
if
token
is
not
None
:
@
property
return
token
def
id
(
self
):
return
self
.
_id
token
=
unique_name
.
generate
(
'py_func_op_token'
)
self
.
_token_func_dict
[
token
]
=
func
def
__call__
(
self
,
*
args
):
self
.
_func_token_dict
[
func
]
=
token
kwargs
=
dict
()
return
token
idx
=
0
for
arg
in
self
.
_named_args
:
def
__call__
(
self
,
token
,
*
args
):
kwargs
[
arg
]
=
args
[
idx
]
func
=
self
.
_token_func_dict
.
get
(
token
,
None
)
idx
+=
1
if
func
is
None
:
raise
ValueError
(
"func has not been registered"
)
ret0
=
self
.
_func
(
*
args
[
idx
:],
**
kwargs
)
if
ret0
is
None
:
arg_list
=
inspect
.
getargspec
(
func
)
return
None
kwargs
=
dict
()
idx
=
0
if
not
isinstance
(
ret0
,
(
list
,
tuple
)):
for
arg
in
arg_list
[
0
]:
ret0
=
(
ret0
,
)
kwargs
[
arg
]
=
args
[
idx
]
idx
+=
1
ret
=
[]
for
i
in
six
.
moves
.
range
(
len
(
ret0
)):
args
=
args
[
idx
:]
if
ret0
[
i
]
is
None
:
ret0
=
func
(
*
args
,
**
kwargs
)
ret
.
append
(
None
)
if
ret0
is
None
:
continue
return
None
if
isinstance
(
ret0
[
i
],
core
.
LoDTensor
):
if
not
isinstance
(
ret0
,
(
list
,
tuple
)):
ret
.
append
(
ret0
[
i
])
ret0
=
(
ret0
,
)
continue
ret
=
[]
if
isinstance
(
ret0
[
i
],
np
.
ndarray
):
for
i
in
six
.
moves
.
range
(
len
(
ret0
)):
r
=
ret0
[
i
]
if
ret0
[
i
]
is
None
:
else
:
ret
.
append
(
None
)
r
=
np
.
array
(
ret0
[
i
])
continue
if
isinstance
(
ret0
[
i
],
core
.
LoDTensor
):
ret
.
append
(
ret0
[
i
])
continue
if
isinstance
(
ret0
[
i
],
np
.
ndarray
):
t
=
core
.
LoDTensor
()
r
=
ret0
[
i
]
t
.
set
(
r
,
core
.
CPUPlace
())
else
:
ret
.
append
(
t
)
r
=
np
.
array
(
ret0
[
i
])
t
=
core
.
LoDTensor
()
return
tuple
(
ret
)
t
.
set
(
r
,
core
.
CPUPlace
())
ret
.
append
(
t
)
return
tuple
(
ret
)
@
templatedoc
()
def
py_func
(
func
,
x
,
out
,
backward_func
=
None
,
skip_vars_in_backward_input
=
None
):
"""
PyFunc Operator.
User can use :code:`py_func` to register operators in Python side.
The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
numpy array or :code:`LoDTensor`. Paddle would call the registered
:code:`func` in forward part, and call :code:`backward_func` in
backward part (if :code:`backward_func` is not None).
User should set the right data type and shape of :code:`out` before
calling this function. However, data types and shapes of gradients of
:code:`out` and :code:`x` would be infered automatically.
The orders of inputs of :code:`backward_func` would be: forward input
:code:`x`, forward output :code:`out` and backward input gradient of
:code:`out`. If some variables of :code:`out` have no gradient, the input
tensor would be None in Python side. If some variables of :code:`in` have
no gradient, users should return None.
Args:
func (callable): forward Python function.
x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
Paddle cannot infer shapes and data types of :code:`out`. Users
should create :code:`out` beforehand.
backward_func (callable|None): backward Python function.
None means no backward. Default None.
skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
Variables that are not needed in :code:`backward_func` inputs.
These variables must be any of :code:`x` and :code:`out`.
If set, these vars would not be inputs of :code:`backward_func`,
Only useful when :code:`backward_func` is not None. Default None.
Returns:
out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
"""
helper
=
LayerHelper
(
'py_func'
,
**
locals
())
helper
=
LayerHelper
(
'py_func'
,
**
locals
())
if
isinstance
(
x
,
Variable
):
if
x
is
None
:
x
=
[]
elif
isinstance
(
x
,
Variable
):
x
=
[
x
]
x
=
[
x
]
elif
not
isinstance
(
x
,
(
list
,
tuple
)):
raise
TypeError
(
'Input must be Variable/list(Variable)/tuple(Variable)'
)
if
isinstance
(
out
,
Variable
):
if
out
is
None
:
out_list
=
[]
elif
isinstance
(
out
,
Variable
):
out_list
=
[
out
]
out_list
=
[
out
]
el
se
:
el
if
isinstance
(
out
,
(
list
,
tuple
))
:
out_list
=
out
out_list
=
out
else
:
raise
TypeError
(
'Output must be Variable/list(Variable)/tuple(Variable)'
)
if
func
is
None
or
not
hasattr
(
func
,
'__call__'
):
fwd_func_id
=
PyFuncWrapper
(
func
).
id
raise
TypeError
(
'Input func must be a function'
)
bwd_func_id
=
PyFuncWrapper
(
backward_func
).
id
if
backward_func
is
not
None
else
-
1
if
backward_func
is
not
None
and
not
hasattr
(
backward_func
,
'__call__'
):
raise
TypeError
(
'Input backward_func must be a function'
)
for
each_out
in
out_list
:
for
each_out
in
out_list
:
if
len
(
each_out
.
shape
)
==
0
:
if
len
(
each_out
.
shape
)
==
0
:
...
@@ -9192,18 +9228,34 @@ def py_func(func, x, out, backward_func=None):
...
@@ -9192,18 +9228,34 @@ def py_func(func, x, out, backward_func=None):
'Output shapes of py_func op should be provided by users manually'
'Output shapes of py_func op should be provided by users manually'
)
)
py_func_reg
=
PyFuncRegister
.
get_instance
(
helper
.
main_program
)
backward_skip_vars
=
set
()
forward_token
=
py_func_reg
.
unique_token
(
func
)
if
backward_func
is
not
None
and
skip_vars_in_backward_input
is
not
None
:
backward_token
=
py_func_reg
.
unique_token
(
if
isinstance
(
skip_vars_in_backward_input
,
Variable
):
backward_func
)
if
backward_func
is
not
None
else
''
skip_vars_in_backward_input
=
[
skip_vars_in_backward_input
]
fwd_in_out
=
[
v
.
name
for
v
in
x
]
fwd_in_out
.
extend
([
v
.
name
for
v
in
out_list
])
fwd_in_out
=
set
(
fwd_in_out
)
backward_skip_vars
=
set
()
for
v
in
skip_vars_in_backward_input
:
if
not
v
.
name
in
fwd_in_out
:
raise
ValueError
(
'Variable {} is not found in forward inputs and outputs'
.
format
(
v
.
name
))
backward_skip_vars
.
add
(
v
.
name
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'py_func'
,
type
=
'py_func'
,
inputs
=
{
'X'
:
x
},
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out_list
},
outputs
=
{
'Out'
:
out_list
},
attrs
=
{
attrs
=
{
'
handle_idx'
:
py_func_reg
.
handle_idx
,
'
forward_callable_id'
:
fwd_func_id
,
'
token'
:
forward_token
,
'
backward_callable_id'
:
bwd_func_id
,
'backward_
token'
:
backward_token
'backward_
skip_vars'
:
list
(
backward_skip_vars
)
})
})
return
out
return
out
# For debug usage
py_func
.
registered_func
=
PyFuncWrapper
.
registered_func
py_func
.
registered_func_num
=
PyFuncWrapper
.
registered_func_num
python/paddle/fluid/tests/unittests/test_py_func_op.py
0 → 100644
浏览文件 @
8b9d33fa
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
paddle
import
unittest
import
six
import
numpy
as
np
def
tanh
(
x
):
return
np
.
tanh
(
x
)
def
tanh_grad
(
y
,
dy
):
return
np
.
array
(
dy
)
*
(
1
-
np
.
square
(
np
.
array
(
y
)))
def
cross_entropy
(
logits
,
labels
):
logits
=
np
.
array
(
logits
)
labels
=
np
.
array
(
labels
)
M
=
logits
.
shape
[
0
]
N
=
logits
.
shape
[
1
]
ret
=
np
.
ndarray
([
M
,
1
]).
astype
(
logits
.
dtype
)
for
idx
in
six
.
moves
.
range
(
M
):
ret
[
idx
][
0
]
=
-
np
.
log
(
logits
[
idx
][
labels
[
idx
][
0
]])
return
ret
def
cross_entropy_grad
(
logits
,
labels
,
bwd_dout
):
logits
=
np
.
array
(
logits
)
labels
=
np
.
array
(
labels
)
bwd_dout
=
np
.
array
(
bwd_dout
)
M
=
logits
.
shape
[
0
]
N
=
logits
.
shape
[
1
]
dlogits
=
np
.
zeros
([
M
,
N
]).
astype
(
logits
.
dtype
)
for
idx
in
six
.
moves
.
range
(
M
):
dlogits
[
idx
][
labels
[
idx
][
0
]]
=
-
bwd_dout
[
idx
]
/
logits
[
idx
][
labels
[
idx
][
0
]]
return
dlogits
,
None
def
simple_fc_net
(
img
,
label
,
use_py_func_op
):
hidden
=
img
for
idx
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
if
use_py_func_op
:
hidden
=
fluid
.
layers
.
tanh
(
hidden
)
else
:
new_hidden
=
fluid
.
default_main_program
().
current_block
(
).
create_var
(
name
=
'hidden_{}'
.
format
(
idx
),
dtype
=
'float32'
,
shape
=
hidden
.
shape
)
hidden
=
fluid
.
layers
.
py_func
(
func
=
tanh
,
x
=
hidden
,
out
=
new_hidden
,
backward_func
=
tanh_grad
,
skip_vars_in_backward_input
=
hidden
)
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
if
not
use_py_func_op
:
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
else
:
loss
=
fluid
.
default_main_program
().
current_block
().
create_var
(
name
=
'loss'
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
])
fluid
.
layers
.
py_func
(
func
=
cross_entropy
,
x
=
[
prediction
,
label
],
out
=
loss
,
backward_func
=
cross_entropy_grad
,
skip_vars_in_backward_input
=
loss
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
reader
():
for
_
in
six
.
moves
.
range
(
100
):
yield
np
.
random
.
random
([
784
]),
np
.
random
.
random_integers
(
size
=
[
1
],
low
=
0
,
high
=
9
)
def
test_main
(
use_cuda
,
use_py_func_op
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
None
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
with
fluid
.
scope_guard
(
fluid
.
core
.
Scope
()):
fluid
.
default_main_program
().
random_seed
=
1
fluid
.
default_startup_program
().
random_seed
=
1
np
.
random
.
seed
(
1
)
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
loss
=
simple_fc_net
(
img
,
label
,
use_py_func_op
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-3
)
optimizer
.
minimize
(
loss
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
r
=
paddle
.
batch
(
reader
,
batch_size
=
10
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
ret
=
[]
for
epoch_id
in
six
.
moves
.
range
(
2
):
for
d
in
r
():
L
,
=
exe
.
run
(
feed
=
feeder
.
feed
(
d
),
fetch_list
=
[
loss
])
ret
.
append
(
L
[
0
])
return
np
.
array
(
ret
)
class
TestPyFuncOp
(
unittest
.
TestCase
):
def
test_loss_diff
(
self
):
losses
=
[]
for
use_cuda
in
[
True
,
False
]:
for
use_py_func_op
in
[
True
,
False
]:
L
=
test_main
(
use_cuda
,
use_py_func_op
)
if
L
is
not
None
:
losses
.
append
(
L
)
for
idx
in
six
.
moves
.
range
(
len
(
losses
)
-
1
):
max_diff
=
np
.
max
(
np
.
abs
(
losses
[
idx
]
-
losses
[
0
]))
self
.
assertAlmostEqual
(
max_diff
,
0
,
delta
=
1e-3
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录