Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8b47d90f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8b47d90f
编写于
11月 07, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add 'actual_shape' attribute. test=develop
上级
fef2faa7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
148 addition
and
28 deletion
+148
-28
paddle/fluid/API.spec
paddle/fluid/API.spec
+3
-3
paddle/fluid/operators/interpolate_op.cc
paddle/fluid/operators/interpolate_op.cc
+4
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+105
-19
python/paddle/fluid/tests/unittests/test_interpolate_op.py
python/paddle/fluid/tests/unittests/test_interpolate_op.py
+36
-4
未找到文件。
paddle/fluid/API.spec
浏览文件 @
8b47d90f
...
@@ -118,10 +118,10 @@ paddle.fluid.layers.label_smooth ArgSpec(args=['label', 'prior_dist', 'epsilon',
...
@@ -118,10 +118,10 @@ paddle.fluid.layers.label_smooth ArgSpec(args=['label', 'prior_dist', 'epsilon',
paddle.fluid.layers.roi_pool ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0))
paddle.fluid.layers.roi_pool ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0))
paddle.fluid.layers.roi_align ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None))
paddle.fluid.layers.roi_align ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None))
paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,))
paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,))
paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample'
], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR'
))
paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample'
, 'actual_shape'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None
))
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'
], varargs=None, keywords=None, defaults=(
None, None, None))
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'
, 'actual_shape'], varargs=None, keywords=None, defaults=(None,
None, None, None))
paddle.fluid.layers.resize_nearest ArgSpec(args=['input', 'out_shape', 'scale', 'name'
], varargs=None, keywords=None, defaults=(
None, None, None))
paddle.fluid.layers.resize_nearest ArgSpec(args=['input', 'out_shape', 'scale', 'name'
, 'actual_shape'], varargs=None, keywords=None, defaults=(None,
None, None, None))
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
...
...
paddle/fluid/operators/interpolate_op.cc
浏览文件 @
8b47d90f
...
@@ -40,11 +40,13 @@ class InterpolateOp : public framework::OperatorWithKernel {
...
@@ -40,11 +40,13 @@ class InterpolateOp : public framework::OperatorWithKernel {
int
out_w
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_w"
);
int
out_w
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_w"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"X's dimension must be 4"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"X's dimension must be 4"
);
if
(
ctx
->
HasInput
(
"OutSize"
))
{
if
(
ctx
->
HasInput
(
"OutSize"
)
&&
ctx
->
IsRuntime
()
)
{
auto
out_size_dim
=
ctx
->
GetInputDim
(
"OutSize"
);
auto
out_size_dim
=
ctx
->
GetInputDim
(
"OutSize"
);
PADDLE_ENFORCE_EQ
(
out_size_dim
.
size
(),
1
,
PADDLE_ENFORCE_EQ
(
out_size_dim
.
size
(),
1
,
"OutSize's dimension size must be 1"
);
"OutSize's dimension size must be 1"
);
PADDLE_ENFORCE_EQ
(
out_size_dim
[
0
],
2
,
"OutSize's dim[0] must be 2"
);
PADDLE_ENFORCE_EQ
(
out_size_dim
[
0
],
2
,
"OutSize's dim[0] must be 2"
);
ctx
->
ShareLoD
(
"X"
,
"Out"
);
return
;
}
}
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
],
dim_x
[
1
],
out_h
,
out_w
});
std
::
vector
<
int64_t
>
dim_out
({
dim_x
[
0
],
dim_x
[
1
],
out_h
,
out_w
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
dim_out
));
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
dim_out
));
...
@@ -86,7 +88,7 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -86,7 +88,7 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
interpolation.
interpolation.
Nearest neighbor interpolation is to perform nearest neighbor interpolation
Nearest neighbor interpolation is to perform nearest neighbor interpolation
in bot the 3rd dimention(in height direction) and the 4th dimention(in width
in bot
h
the 3rd dimention(in height direction) and the 4th dimention(in width
direction) on input tensor.
direction) on input tensor.
Bilinear interpolation is an extension of linear interpolation for
Bilinear interpolation is an extension of linear interpolation for
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
8b47d90f
...
@@ -5575,7 +5575,8 @@ def image_resize(input,
...
@@ -5575,7 +5575,8 @@ def image_resize(input,
out_shape
=
None
,
out_shape
=
None
,
scale
=
None
,
scale
=
None
,
name
=
None
,
name
=
None
,
resample
=
'BILINEAR'
):
resample
=
'BILINEAR'
,
actual_shape
=
None
):
"""
"""
**Resize a Batch of Images**
**Resize a Batch of Images**
...
@@ -5600,25 +5601,50 @@ def image_resize(input,
...
@@ -5600,25 +5601,50 @@ def image_resize(input,
Default: None
Default: None
name(str|None): A name for this layer(optional). If set None, the layer
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
will be named automatically.
resample(str): The resample method. It can only be 'BILINEAR' currently.
resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
currently.
Default: 'BILINEAR'
Default: 'BILINEAR'
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When
using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph
constructing stage.
Default: None
Returns:
Returns:
Variable: The output is a 4-D tensor of the shape
Variable: The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w).
(num_batches, channls, out_h, out_w).
Raises:
TypeError: out_shape should be a list or tuple or Variable.
TypeError: actual_shape should either be Variable or None.
ValueError: The 'resample' of image_resize can only be 'BILINEAR'
or 'NEAREST' currently.
ValueError: One of out_shape and scale must not be None.
ValueError: out_shape length should be 2.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
out = fluid.layers.image_resize(input, out_shape=[12, 12])
out = fluid.layers.image_resize(input, out_shape=[12, 12])
"""
"""
resample_methods
=
{
'BILINEAR'
:
'bilinear'
,
'NEAREST'
:
'nearest'
}
resample_methods
=
{
'BILINEAR'
:
'bilinear'
,
'NEAREST'
:
'nearest'
,
}
if
resample
not
in
resample_methods
:
if
resample
not
in
resample_methods
:
raise
ValueError
(
raise
ValueError
(
"The 'resample' of image_resize can only be 'BILINEAR'
and
'NEAREST' currently."
"The 'resample' of image_resize can only be 'BILINEAR'
or
'NEAREST' currently."
)
)
if
out_shape
is
None
and
scale
is
None
:
if
out_shape
is
None
and
scale
is
None
:
raise
ValueError
(
"One of out_shape and scale must not be None"
)
raise
ValueError
(
"One of out_shape and scale must not be None
.
"
)
helper
=
LayerHelper
(
'interpolate'
,
**
locals
())
helper
=
LayerHelper
(
'interpolate'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
helper
.
input_dtype
()
...
@@ -5629,19 +5655,28 @@ def image_resize(input,
...
@@ -5629,19 +5655,28 @@ def image_resize(input,
out_w
=
0
out_w
=
0
inputs
=
{
"X"
:
input
}
inputs
=
{
"X"
:
input
}
if
out_shape
is
not
None
:
if
out_shape
is
not
None
:
if
not
(
_is_list_or_turple_
(
out_shape
)
and
if
isinstance
(
out_shape
,
Variable
):
len
(
out_shape
)
==
2
)
and
not
isinstance
(
out_shape
,
Variable
):
warnings
.
warn
(
"out_shape as Variable type is deprecated,
\
raise
ValueError
(
'out_shape should be a list or tuple or variable'
)
it is recommended to use actual_shape instead of
\
if
_is_list_or_turple_
(
out_shape
):
out_shape to specify output shape dynamically."
)
out_shape
=
list
(
map
(
int
,
out_shape
))
out_h
=
out_shape
[
0
]
out_w
=
out_shape
[
1
]
else
:
inputs
[
'OutSize'
]
=
out_shape
inputs
[
'OutSize'
]
=
out_shape
elif
not
(
_is_list_or_turple_
(
out_shape
)):
raise
TypeError
(
"out_shape should be a list or tuple or Variable."
)
elif
len
(
out_shape
)
!=
2
:
raise
ValueError
(
"out_shape length should be 2."
)
out_shape
=
list
(
map
(
int
,
out_shape
))
out_h
=
out_shape
[
0
]
out_w
=
out_shape
[
1
]
else
:
else
:
out_h
=
int
(
input
.
shape
[
2
]
*
scale
)
out_h
=
int
(
input
.
shape
[
2
]
*
scale
)
out_w
=
int
(
input
.
shape
[
3
]
*
scale
)
out_w
=
int
(
input
.
shape
[
3
]
*
scale
)
if
isinstance
(
actual_shape
,
Variable
):
inputs
[
"OutSize"
]
=
actual_shape
elif
actual_shape
is
not
None
:
raise
TypeError
(
"actual_shape should either be Variable or None."
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'interpolate'
,
type
=
'interpolate'
,
...
@@ -5656,9 +5691,24 @@ def image_resize(input,
...
@@ -5656,9 +5691,24 @@ def image_resize(input,
@
templatedoc
(
op_type
=
"interpolate"
)
@
templatedoc
(
op_type
=
"interpolate"
)
def
resize_bilinear
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
):
def
resize_bilinear
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
,
actual_shape
=
None
):
"""
"""
${comment}
Resize input by performing bilinear interpolation based on given
output shape which specified by actual_shape, out_shape and scale
in priority order.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this op) on a rectilinear 2D grid. The key idea is
to perform linear interpolation first in one direction, and then
again in the other direction.
For details of bilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
Args:
Args:
input(${x_type}): ${x_comment}.
input(${x_type}): ${x_comment}.
...
@@ -5670,18 +5720,41 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
...
@@ -5670,18 +5720,41 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
a higher priority than scale. Default: None.
a higher priority than scale. Default: None.
name(str|None): The output variable name.
name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When
using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph
constructing stage.
Default: None
Returns:
Returns:
${out_comment}.
${out_comment}.
"""
"""
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'BILINEAR'
)
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'BILINEAR'
,
actual_shape
)
@
templatedoc
(
op_type
=
"interpolate"
)
@
templatedoc
(
op_type
=
"interpolate"
)
def
resize_nearest
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
):
def
resize_nearest
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
,
actual_shape
=
None
):
"""
"""
${comment}
Resize input by performing nearest neighbor interpolation in both the
3rd dimention(in height direction) and the 4th dimention(in width
direction) based on given output shape which specified by actual_shape,
out_shape and scale in priority order.
For details of nearest neighbor interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Args:
Args:
input(${x_type}): ${x_comment}.
input(${x_type}): ${x_comment}.
...
@@ -5693,12 +5766,25 @@ def resize_nearest(input, out_shape=None, scale=None, name=None):
...
@@ -5693,12 +5766,25 @@ def resize_nearest(input, out_shape=None, scale=None, name=None):
a higher priority than scale. Default: None.
a higher priority than scale. Default: None.
name(str|None): The output variable name.
name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When
using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph
constructing stage.
Default: None
Returns:
Returns:
${out_comment}.
${out_comment}.
"""
"""
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'NEAREST'
)
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'NEAREST'
,
actual_shape
)
def
image_resize_short
(
input
,
out_short_len
,
resample
=
'BILINEAR'
):
def
image_resize_short
(
input
,
out_short_len
,
resample
=
'BILINEAR'
):
...
...
python/paddle/fluid/tests/unittests/test_interpolate_op.py
浏览文件 @
8b47d90f
...
@@ -20,11 +20,18 @@ from op_test import OpTest
...
@@ -20,11 +20,18 @@ from op_test import OpTest
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
def
nearest_neighbor_interp_np
(
X
,
out_h
,
out_w
,
out_size
=
None
):
def
nearest_neighbor_interp_np
(
X
,
out_h
,
out_w
,
out_size
=
None
,
actual_shape
=
None
):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if
out_size
is
not
None
:
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
out_w
=
out_size
[
1
]
if
actual_shape
is
not
None
:
out_h
=
actual_shape
[
0
]
out_w
=
actual_shape
[
1
]
n
,
c
,
in_h
,
in_w
=
X
.
shape
n
,
c
,
in_h
,
in_w
=
X
.
shape
ratio_h
=
ratio_w
=
0.0
ratio_h
=
ratio_w
=
0.0
...
@@ -43,11 +50,14 @@ def nearest_neighbor_interp_np(X, out_h, out_w, out_size=None):
...
@@ -43,11 +50,14 @@ def nearest_neighbor_interp_np(X, out_h, out_w, out_size=None):
return
out
.
astype
(
X
.
dtype
)
return
out
.
astype
(
X
.
dtype
)
def
bilinear_interp_np
(
input
,
out_h
,
out_w
,
out_size
):
def
bilinear_interp_np
(
input
,
out_h
,
out_w
,
out_size
=
None
,
actual_shape
=
None
):
"""bilinear interpolation implement in shape [N, C, H, W]"""
"""bilinear interpolation implement in shape [N, C, H, W]"""
if
out_size
is
not
None
:
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
out_w
=
out_size
[
1
]
if
actual_shape
is
not
None
:
out_h
=
actual_shape
[
0
]
out_w
=
actual_shape
[
1
]
batch_size
,
channel
,
in_h
,
in_w
=
input
.
shape
batch_size
,
channel
,
in_h
,
in_w
=
input
.
shape
if
out_h
>
1
:
if
out_h
>
1
:
ratio_h
=
(
in_h
-
1.0
)
/
(
out_h
-
1.0
)
ratio_h
=
(
in_h
-
1.0
)
/
(
out_h
-
1.0
)
...
@@ -86,15 +96,18 @@ INTERPOLATE_FUNCS = {
...
@@ -86,15 +96,18 @@ INTERPOLATE_FUNCS = {
class
TestInterpolateOp
(
OpTest
):
class
TestInterpolateOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
out_size
=
None
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
self
.
init_test_case
()
self
.
op_type
=
"interpolate"
self
.
op_type
=
"interpolate"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
output_np
=
INTERPOLATE_FUNCS
[
self
.
interp_method
](
output_np
=
INTERPOLATE_FUNCS
[
self
.
interp_method
](
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
)
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
,
self
.
actual_shape
)
self
.
inputs
=
{
'X'
:
input_np
}
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'out_w'
:
self
.
out_w
,
...
@@ -167,6 +180,15 @@ class TestBilinearInterpCase6(TestInterpolateOp):
...
@@ -167,6 +180,15 @@ class TestBilinearInterpCase6(TestInterpolateOp):
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestBilinearInterpActualShape
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
class
TestBilinearInterpBigScale
(
TestInterpolateOp
):
class
TestBilinearInterpBigScale
(
TestInterpolateOp
):
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
interp_method
=
'bilinear'
...
@@ -179,12 +201,13 @@ class TestBilinearInterpBigScale(TestInterpolateOp):
...
@@ -179,12 +201,13 @@ class TestBilinearInterpBigScale(TestInterpolateOp):
class
TestInterpolateOpUint8
(
OpTest
):
class
TestInterpolateOpUint8
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
out_size
=
None
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
self
.
init_test_case
()
self
.
op_type
=
"interpolate"
self
.
op_type
=
"interpolate"
input_np
=
np
.
random
.
randint
(
input_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
256
,
size
=
self
.
input_shape
).
astype
(
"uint8"
)
low
=
0
,
high
=
256
,
size
=
self
.
input_shape
).
astype
(
"uint8"
)
output_np
=
INTERPOLATE_FUNCS
[
self
.
interp_method
](
output_np
=
INTERPOLATE_FUNCS
[
self
.
interp_method
](
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
)
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
,
self
.
actual_shape
)
self
.
inputs
=
{
'X'
:
input_np
}
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
...
@@ -273,6 +296,15 @@ class TestNearestNeighborInterpCase6(TestInterpolateOp):
...
@@ -273,6 +296,15 @@ class TestNearestNeighborInterpCase6(TestInterpolateOp):
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpActualShape
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpBigScale
(
TestInterpolateOp
):
class
TestNearestNeighborInterpBigScale
(
TestInterpolateOp
):
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
interp_method
=
'nearest'
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录