Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8a95c4b2
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8a95c4b2
编写于
6月 01, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
6月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add prune infer (#825)
* add prune infer.py
上级
ace2e5e1
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
262 addition
and
0 deletion
+262
-0
slim/prune/infer.py
slim/prune/infer.py
+262
-0
未找到文件。
slim/prune/infer.py
0 → 100644
浏览文件 @
8a95c4b2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
,
sys
# add python path of PadleDetection to sys.path
parent_path
=
os
.
path
.
abspath
(
os
.
path
.
join
(
__file__
,
*
([
'..'
]
*
2
)))
if
parent_path
not
in
sys
.
path
:
sys
.
path
.
append
(
parent_path
)
import
glob
import
numpy
as
np
from
PIL
import
Image
from
paddle
import
fluid
from
paddleslim.prune
import
Pruner
from
paddleslim.analysis
import
flops
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.utils.eval_utils
import
parse_fetches
from
ppdet.utils.cli
import
ArgsParser
from
ppdet.utils.check
import
check_gpu
,
check_version
,
check_config
from
ppdet.utils.visualizer
import
visualize_results
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.data.reader
import
create_reader
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
def
get_save_image_name
(
output_dir
,
image_path
):
"""
Get save image name from source image path.
"""
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
)
image_name
=
os
.
path
.
split
(
image_path
)[
-
1
]
name
,
ext
=
os
.
path
.
splitext
(
image_name
)
return
os
.
path
.
join
(
output_dir
,
"{}"
.
format
(
name
))
+
ext
def
get_test_images
(
infer_dir
,
infer_img
):
"""
Get image path list in TEST mode
"""
assert
infer_img
is
not
None
or
infer_dir
is
not
None
,
\
"--infer_img or --infer_dir should be set"
assert
infer_img
is
None
or
os
.
path
.
isfile
(
infer_img
),
\
"{} is not a file"
.
format
(
infer_img
)
assert
infer_dir
is
None
or
os
.
path
.
isdir
(
infer_dir
),
\
"{} is not a directory"
.
format
(
infer_dir
)
# infer_img has a higher priority
if
infer_img
and
os
.
path
.
isfile
(
infer_img
):
return
[
infer_img
]
images
=
set
()
infer_dir
=
os
.
path
.
abspath
(
infer_dir
)
assert
os
.
path
.
isdir
(
infer_dir
),
\
"infer_dir {} is not a directory"
.
format
(
infer_dir
)
exts
=
[
'jpg'
,
'jpeg'
,
'png'
,
'bmp'
]
exts
+=
[
ext
.
upper
()
for
ext
in
exts
]
for
ext
in
exts
:
images
.
update
(
glob
.
glob
(
'{}/*.{}'
.
format
(
infer_dir
,
ext
)))
images
=
list
(
images
)
assert
len
(
images
)
>
0
,
"no image found in {}"
.
format
(
infer_dir
)
logger
.
info
(
"Found {} inference images in total."
.
format
(
len
(
images
)))
return
images
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
merge_config
(
FLAGS
.
opt
)
check_config
(
cfg
)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu
(
cfg
.
use_gpu
)
# check if paddlepaddle version is satisfied
check_version
()
main_arch
=
cfg
.
architecture
dataset
=
cfg
.
TestReader
[
'dataset'
]
test_images
=
get_test_images
(
FLAGS
.
infer_dir
,
FLAGS
.
infer_img
)
dataset
.
set_images
(
test_images
)
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
model
=
create
(
main_arch
)
startup_prog
=
fluid
.
Program
()
infer_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
infer_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
inputs_def
=
cfg
[
'TestReader'
][
'inputs_def'
]
inputs_def
[
'iterable'
]
=
True
feed_vars
,
loader
=
model
.
build_inputs
(
**
inputs_def
)
test_fetches
=
model
.
test
(
feed_vars
)
infer_prog
=
infer_prog
.
clone
(
True
)
pruned_params
=
FLAGS
.
pruned_params
assert
(
FLAGS
.
pruned_params
is
not
None
),
"FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
pruned_params
=
FLAGS
.
pruned_params
.
strip
().
split
(
","
)
logger
.
info
(
"pruned params: {}"
.
format
(
pruned_params
))
pruned_ratios
=
[
float
(
n
)
for
n
in
FLAGS
.
pruned_ratios
.
strip
().
split
(
","
)]
logger
.
info
(
"pruned ratios: {}"
.
format
(
pruned_ratios
))
assert
(
len
(
pruned_params
)
==
len
(
pruned_ratios
)
),
"The length of pruned params and pruned ratios should be equal."
assert
(
pruned_ratios
>
[
0
]
*
len
(
pruned_ratios
)
and
pruned_ratios
<
[
1
]
*
len
(
pruned_ratios
)
),
"The elements of pruned ratios should be in range (0, 1)."
base_flops
=
flops
(
infer_prog
)
pruner
=
Pruner
()
infer_prog
,
_
,
_
=
pruner
.
prune
(
infer_prog
,
fluid
.
global_scope
(),
params
=
pruned_params
,
ratios
=
pruned_ratios
,
place
=
place
,
only_graph
=
True
)
pruned_flops
=
flops
(
infer_prog
)
logger
.
info
(
"pruned FLOPS: {}"
.
format
(
float
(
base_flops
-
pruned_flops
)
/
base_flops
))
reader
=
create_reader
(
cfg
.
TestReader
,
devices_num
=
1
)
loader
.
set_sample_list_generator
(
reader
,
place
)
exe
.
run
(
startup_prog
)
if
cfg
.
weights
:
checkpoint
.
load_checkpoint
(
exe
,
infer_prog
,
cfg
.
weights
)
# parse infer fetches
assert
cfg
.
metric
in
[
'COCO'
,
'VOC'
,
'OID'
,
'WIDERFACE'
],
\
"unknown metric type {}"
.
format
(
cfg
.
metric
)
extra_keys
=
[]
if
cfg
[
'metric'
]
in
[
'COCO'
,
'OID'
]:
extra_keys
=
[
'im_info'
,
'im_id'
,
'im_shape'
]
if
cfg
[
'metric'
]
==
'VOC'
or
cfg
[
'metric'
]
==
'WIDERFACE'
:
extra_keys
=
[
'im_id'
,
'im_shape'
]
keys
,
values
,
_
=
parse_fetches
(
test_fetches
,
infer_prog
,
extra_keys
)
# parse dataset category
if
cfg
.
metric
==
'COCO'
:
from
ppdet.utils.coco_eval
import
bbox2out
,
mask2out
,
get_category_info
if
cfg
.
metric
==
'OID'
:
from
ppdet.utils.oid_eval
import
bbox2out
,
get_category_info
if
cfg
.
metric
==
"VOC"
:
from
ppdet.utils.voc_eval
import
bbox2out
,
get_category_info
if
cfg
.
metric
==
"WIDERFACE"
:
from
ppdet.utils.widerface_eval_utils
import
bbox2out
,
get_category_info
anno_file
=
dataset
.
get_anno
()
with_background
=
dataset
.
with_background
use_default_label
=
dataset
.
use_default_label
clsid2catid
,
catid2name
=
get_category_info
(
anno_file
,
with_background
,
use_default_label
)
# whether output bbox is normalized in model output layer
is_bbox_normalized
=
False
if
hasattr
(
model
,
'is_bbox_normalized'
)
and
\
callable
(
model
.
is_bbox_normalized
):
is_bbox_normalized
=
model
.
is_bbox_normalized
()
imid2path
=
dataset
.
get_imid2path
()
for
iter_id
,
data
in
enumerate
(
loader
()):
outs
=
exe
.
run
(
infer_prog
,
feed
=
data
,
fetch_list
=
values
,
return_numpy
=
False
)
res
=
{
k
:
(
np
.
array
(
v
),
v
.
recursive_sequence_lengths
())
for
k
,
v
in
zip
(
keys
,
outs
)
}
logger
.
info
(
'Infer iter {}'
.
format
(
iter_id
))
bbox_results
=
None
mask_results
=
None
if
'bbox'
in
res
:
bbox_results
=
bbox2out
([
res
],
clsid2catid
,
is_bbox_normalized
)
if
'mask'
in
res
:
mask_results
=
mask2out
([
res
],
clsid2catid
,
model
.
mask_head
.
resolution
)
# visualize result
im_ids
=
res
[
'im_id'
][
0
]
for
im_id
in
im_ids
:
image_path
=
imid2path
[
int
(
im_id
)]
image
=
Image
.
open
(
image_path
).
convert
(
'RGB'
)
image
=
visualize_results
(
image
,
int
(
im_id
),
catid2name
,
FLAGS
.
draw_threshold
,
bbox_results
,
mask_results
)
save_name
=
get_save_image_name
(
FLAGS
.
output_dir
,
image_path
)
logger
.
info
(
"Detection bbox results save in {}"
.
format
(
save_name
))
image
.
save
(
save_name
,
quality
=
95
)
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
.
add_argument
(
"--infer_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory for images to perform inference on."
)
parser
.
add_argument
(
"--infer_img"
,
type
=
str
,
default
=
None
,
help
=
"Image path, has higher priority over --infer_dir"
)
parser
.
add_argument
(
"--output_dir"
,
type
=
str
,
default
=
"output"
,
help
=
"Directory for storing the output visualization files."
)
parser
.
add_argument
(
"--draw_threshold"
,
type
=
float
,
default
=
0.5
,
help
=
"Threshold to reserve the result for visualization."
)
parser
.
add_argument
(
"-p"
,
"--pruned_params"
,
default
=
None
,
type
=
str
,
help
=
"The parameters to be pruned when calculating sensitivities."
)
parser
.
add_argument
(
"--pruned_ratios"
,
default
=
None
,
type
=
str
,
help
=
"The ratios pruned iteratively for each parameter when calculating sensitivities."
)
FLAGS
=
parser
.
parse_args
()
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录