未验证 提交 89d09b83 编写于 作者: J Jiabin Yang 提交者: GitHub

Cherry pick 1.4/ptb fix (#16607)

* test=develop, ptb_rnn fix op

* test=release/1.4, refine code

* test=release/1.4, fix ci failed error
上级 065ffcce
......@@ -91,6 +91,10 @@ class LayerObjectHelper(LayerHelperBase):
Returns input, param_attr
"""
param_attr_in = ParamAttr._to_attr(param_attr_in)
if isinstance(param_attr_in, bool):
raise ValueError('Param_attr should not be False in {}'.format(
self.name))
inputs = inputs_in if (inputs_in is not None) else []
inputs = self._multiple_input(inputs)
param_attrs = self._multiple_param_attr(len(inputs), param_attr_in)
......
......@@ -20,7 +20,7 @@ import numpy as np
from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..framework import Variable, OpProtoHolder, Parameter
from ..layers import layer_function_generator
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant, NumpyArrayInitializer
......@@ -213,46 +213,69 @@ class FC(layers.Layer):
self._param_attr = param_attr
self._bias_attr = bias_attr
self._act = act
self.__w = list()
def _build_once(self, input):
input_shape = input.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
] + [self._size]
self._w = self.create_parameter(
attr=self._param_attr,
shape=param_shape,
dtype=self._dtype,
is_bias=False)
@property
def _w(self, i=0):
return self.__w[i]
if self._bias_attr:
size = list([self._size])
self._b = self.create_parameter(
attr=self._bias_attr,
shape=size,
dtype=self._dtype,
is_bias=True)
else:
self._b = None
@_w.setter
def _w(self, value, i=0):
assert isinstance(value, Parameter)
self.__w[i] = value
def forward(self, input):
tmp = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="mul",
inputs={"X": input,
"Y": self._w},
outputs={"Out": tmp},
attrs={
"x_num_col_dims": self._num_flatten_dims,
"y_num_col_dims": 1
})
def _build_once(self, input):
i = 0
for inp, param in self._helper.iter_inputs_and_params(input,
self._param_attr):
input_shape = inp.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:],
1)
] + [self._size]
self.__w.append(
self.add_parameter(
'_w%d' % i,
self.create_parameter(
attr=param,
shape=param_shape,
dtype=self._dtype,
is_bias=False)))
i += 1
size = list([self._size])
self._b = self.create_parameter(
attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="sum",
inputs={"X": [tmp]},
outputs={"Out": pre_bias},
attrs={"use_mkldnn": False})
def forward(self, input):
mul_results = list()
i = 0
for inp, param in self._helper.iter_inputs_and_params(input,
self._param_attr):
tmp = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="mul",
inputs={"X": inp,
"Y": self.__w[i]},
outputs={"Out": tmp},
attrs={
"x_num_col_dims": self._num_flatten_dims,
"y_num_col_dims": 1
})
i += 1
mul_results.append(tmp)
if len(mul_results) == 1:
pre_bias = mul_results[0]
else:
pre_bias = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="sum",
inputs={"X": mul_results},
outputs={"Out": pre_bias},
attrs={"use_mkldnn": False})
if self._b:
pre_activation = self._helper.create_variable_for_type_inference(
......
......@@ -200,8 +200,6 @@ class PtbModel(fluid.dygraph.Layer):
rnn_out, shape=[-1, self.num_steps, self.hidden_size])
projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
projection = fluid.layers.reshape(
projection, shape=[-1, self.vocab_size])
projection = fluid.layers.reshape(
projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy(
......@@ -223,6 +221,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
num_steps = 3
init_scale = 0.1
batch_size = 4
batch_num = 200
with fluid.dygraph.guard():
fluid.default_startup_program().random_seed = seed
......@@ -242,7 +241,6 @@ class TestDygraphPtbRnn(unittest.TestCase):
dy_loss = None
last_hidden = None
last_cell = None
batch_num = 200
for i in range(batch_num):
x_data = np.arange(12).reshape(4, 3).astype('int64')
......@@ -282,7 +280,8 @@ class TestDygraphPtbRnn(unittest.TestCase):
exe = fluid.Executor(fluid.CPUPlace())
sgd = SGDOptimizer(learning_rate=1e-3)
x = fluid.layers.data(name="x", shape=[-1, 3, 1], dtype='int64')
x = fluid.layers.data(
name="x", shape=[-1, num_steps, 1], dtype='int64')
y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
init_hidden = fluid.layers.data(
name="init_hidden", shape=[1], dtype='float32')
......@@ -332,7 +331,6 @@ class TestDygraphPtbRnn(unittest.TestCase):
for k in range(3, len(out)):
static_param_updated[static_param_name_list[k -
3]] = out[k]
self.assertTrue(np.allclose(static_loss_value, dy_loss._numpy()))
self.assertTrue(np.allclose(static_last_cell_value, last_cell._numpy()))
self.assertTrue(
......@@ -340,13 +338,11 @@ class TestDygraphPtbRnn(unittest.TestCase):
for key, value in six.iteritems(static_param_init):
# print("static_init name: {}, value {}".format(key, value))
# print("dy_init name: {}, value {}".format(key, dy_param_init[key]))
self.assertTrue(np.allclose(value, dy_param_init[key], atol=1e-5))
self.assertTrue(np.allclose(value, dy_param_init[key]))
for key, value in six.iteritems(static_param_updated):
# print("static name: {}, value {}".format(key, value))
# print("dy name: {}, value {}".format(key, dy_param_updated[key]))
self.assertTrue(
np.allclose(
value, dy_param_updated[key], atol=1e-5))
self.assertTrue(np.allclose(value, dy_param_updated[key]))
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册