Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
85471533
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
85471533
编写于
12月 27, 2018
作者:
T
Tao Luo
提交者:
GitHub
12月 27, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15079 from luotao1/analysis_test
simplify analysis tests
上级
719ebe37
ecae157e
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
58 addition
and
121 deletion
+58
-121
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+10
-0
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
+1
-3
paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc
paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc
+9
-30
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
+11
-27
paddle/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc
...le/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc
+15
-61
paddle/fluid/inference/tests/api/tester_helper.h
paddle/fluid/inference/tests/api/tester_helper.h
+12
-0
未找到文件。
paddle/fluid/inference/api/helper.h
浏览文件 @
85471533
...
...
@@ -113,6 +113,16 @@ static void TensorAssignData(PaddleTensor *tensor,
}
}
template
<
typename
T
>
static
void
TensorAssignData
(
PaddleTensor
*
tensor
,
const
std
::
vector
<
std
::
vector
<
T
>>
&
data
,
const
std
::
vector
<
size_t
>
&
lod
)
{
int
size
=
lod
[
lod
.
size
()
-
1
];
tensor
->
shape
.
assign
({
size
,
1
});
tensor
->
lod
.
assign
({
lod
});
TensorAssignData
(
tensor
,
data
);
}
template
<
typename
T
>
static
int
ZeroCopyTensorAssignData
(
ZeroCopyTensor
*
tensor
,
const
std
::
vector
<
std
::
vector
<
T
>>
&
data
)
{
...
...
paddle/fluid/inference/tests/api/analyzer_lac_tester.cc
浏览文件 @
85471533
...
...
@@ -98,10 +98,8 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
auto
one_batch
=
data
->
NextBatch
();
PaddleTensor
input_tensor
;
input_tensor
.
name
=
"word"
;
input_tensor
.
shape
.
assign
({
static_cast
<
int
>
(
one_batch
.
data
.
size
()),
1
});
input_tensor
.
lod
.
assign
({
one_batch
.
lod
});
input_tensor
.
dtype
=
PaddleDType
::
INT64
;
TensorAssignData
<
int64_t
>
(
&
input_tensor
,
{
one_batch
.
data
});
TensorAssignData
<
int64_t
>
(
&
input_tensor
,
{
one_batch
.
data
}
,
one_batch
.
lod
);
PADDLE_ENFORCE_EQ
(
batch_size
,
static_cast
<
int
>
(
one_batch
.
lod
.
size
()
-
1
));
input_slots
->
assign
({
input_tensor
});
}
...
...
paddle/fluid/inference/tests/api/analyzer_mm_dnn_tester.cc
浏览文件 @
85471533
...
...
@@ -19,11 +19,9 @@ namespace inference {
using
contrib
::
AnalysisConfig
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
query
_data_all
,
title_data_all
;
std
::
vector
<
std
::
vector
<
int64_t
>>
query
,
title
;
std
::
vector
<
size_t
>
lod1
,
lod2
;
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
num_samples
;
// total number of samples
size_t
batch_iter
{
0
},
batch_size
{
1
},
num_samples
;
// total number of samples
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
...
...
@@ -33,22 +31,9 @@ struct DataRecord {
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
query_data_all
.
size
())
{
data
.
query_data_all
.
assign
(
query_data_all
.
begin
()
+
batch_iter
,
query_data_all
.
begin
()
+
batch_end
);
data
.
title_data_all
.
assign
(
title_data_all
.
begin
()
+
batch_iter
,
title_data_all
.
begin
()
+
batch_end
);
// Prepare LoDs
data
.
lod1
.
push_back
(
0
);
data
.
lod2
.
push_back
(
0
);
CHECK
(
!
data
.
query_data_all
.
empty
());
CHECK
(
!
data
.
title_data_all
.
empty
());
CHECK_EQ
(
data
.
query_data_all
.
size
(),
data
.
title_data_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
query_data_all
.
size
();
j
++
)
{
// calculate lod
data
.
lod1
.
push_back
(
data
.
lod1
.
back
()
+
data
.
query_data_all
[
j
].
size
());
data
.
lod2
.
push_back
(
data
.
lod2
.
back
()
+
data
.
title_data_all
[
j
].
size
());
}
if
(
batch_end
<=
query
.
size
())
{
GetInputPerBatch
(
query
,
&
data
.
query
,
&
data
.
lod1
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
title
,
&
data
.
title
,
&
data
.
lod2
,
batch_iter
,
batch_end
);
}
batch_iter
+=
batch_size
;
return
data
;
...
...
@@ -67,8 +52,8 @@ struct DataRecord {
// load title data
std
::
vector
<
int64_t
>
title_data
;
split_to_int64
(
data
[
1
],
' '
,
&
title_data
);
query
_data_all
.
push_back
(
std
::
move
(
query_data
));
title
_data_all
.
push_back
(
std
::
move
(
title_data
));
query
.
push_back
(
std
::
move
(
query_data
));
title
.
push_back
(
std
::
move
(
title_data
));
}
num_samples
=
num_lines
;
}
...
...
@@ -80,15 +65,9 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
lod_query_tensor
.
name
=
"left"
;
lod_title_tensor
.
name
=
"right"
;
auto
one_batch
=
data
->
NextBatch
();
int
size1
=
one_batch
.
lod1
[
one_batch
.
lod1
.
size
()
-
1
];
// token batch size
int
size2
=
one_batch
.
lod2
[
one_batch
.
lod2
.
size
()
-
1
];
// token batch size
lod_query_tensor
.
shape
.
assign
({
size1
,
1
});
lod_query_tensor
.
lod
.
assign
({
one_batch
.
lod1
});
lod_title_tensor
.
shape
.
assign
({
size2
,
1
});
lod_title_tensor
.
lod
.
assign
({
one_batch
.
lod2
});
// assign data
TensorAssignData
<
int64_t
>
(
&
lod_query_tensor
,
one_batch
.
query
_data_all
);
TensorAssignData
<
int64_t
>
(
&
lod_title_tensor
,
one_batch
.
title
_data_all
);
TensorAssignData
<
int64_t
>
(
&
lod_query_tensor
,
one_batch
.
query
,
one_batch
.
lod1
);
TensorAssignData
<
int64_t
>
(
&
lod_title_tensor
,
one_batch
.
title
,
one_batch
.
lod2
);
// Set inputs.
input_slots
->
assign
({
lod_query_tensor
,
lod_title_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
...
...
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
浏览文件 @
85471533
...
...
@@ -19,11 +19,9 @@ namespace inference {
using
contrib
::
AnalysisConfig
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
word
_data_all
,
mention_data_all
;
std
::
vector
<
std
::
vector
<
int64_t
>>
word
,
mention
;
std
::
vector
<
size_t
>
lod
;
// two inputs have the same lod info.
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
num_samples
;
// total number of samples
size_t
batch_iter
{
0
},
batch_size
{
1
},
num_samples
;
// total number of samples
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
...
...
@@ -33,20 +31,10 @@ struct DataRecord {
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
word_data_all
.
size
())
{
data
.
word_data_all
.
assign
(
word_data_all
.
begin
()
+
batch_iter
,
word_data_all
.
begin
()
+
batch_end
);
data
.
mention_data_all
.
assign
(
mention_data_all
.
begin
()
+
batch_iter
,
mention_data_all
.
begin
()
+
batch_end
);
// Prepare LoDs
data
.
lod
.
push_back
(
0
);
CHECK
(
!
data
.
word_data_all
.
empty
());
CHECK
(
!
data
.
mention_data_all
.
empty
());
CHECK_EQ
(
data
.
word_data_all
.
size
(),
data
.
mention_data_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
word_data_all
.
size
();
j
++
)
{
// calculate lod
data
.
lod
.
push_back
(
data
.
lod
.
back
()
+
data
.
word_data_all
[
j
].
size
());
}
if
(
batch_end
<=
word
.
size
())
{
GetInputPerBatch
(
word
,
&
data
.
word
,
&
data
.
lod
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
mention
,
&
data
.
mention
,
&
data
.
lod
,
batch_iter
,
batch_end
);
}
batch_iter
+=
batch_size
;
return
data
;
...
...
@@ -65,8 +53,8 @@ struct DataRecord {
// load mention data
std
::
vector
<
int64_t
>
mention_data
;
split_to_int64
(
data
[
3
],
' '
,
&
mention_data
);
word
_data_all
.
push_back
(
std
::
move
(
word_data
));
mention
_data_all
.
push_back
(
std
::
move
(
mention_data
));
word
.
push_back
(
std
::
move
(
word_data
));
mention
.
push_back
(
std
::
move
(
mention_data
));
}
num_samples
=
num_lines
;
}
...
...
@@ -78,14 +66,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
lod_word_tensor
.
name
=
"word"
;
lod_mention_tensor
.
name
=
"mention"
;
auto
one_batch
=
data
->
NextBatch
();
int
size
=
one_batch
.
lod
[
one_batch
.
lod
.
size
()
-
1
];
// token batch size
lod_word_tensor
.
shape
.
assign
({
size
,
1
});
lod_word_tensor
.
lod
.
assign
({
one_batch
.
lod
});
lod_mention_tensor
.
shape
.
assign
({
size
,
1
});
lod_mention_tensor
.
lod
.
assign
({
one_batch
.
lod
});
// assign data
TensorAssignData
<
int64_t
>
(
&
lod_word_tensor
,
one_batch
.
word_data_all
);
TensorAssignData
<
int64_t
>
(
&
lod_mention_tensor
,
one_batch
.
mention_data_all
);
TensorAssignData
<
int64_t
>
(
&
lod_word_tensor
,
one_batch
.
word
,
one_batch
.
lod
);
TensorAssignData
<
int64_t
>
(
&
lod_mention_tensor
,
one_batch
.
mention
,
one_batch
.
lod
);
// Set inputs.
input_slots
->
assign
({
lod_word_tensor
,
lod_mention_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
...
...
paddle/fluid/inference/tests/api/analyzer_seq_conv1_tester.cc
浏览文件 @
85471533
...
...
@@ -18,12 +18,9 @@ namespace paddle {
namespace
inference
{
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
title1_all
,
title2_all
,
title3_all
,
l1_all
;
std
::
vector
<
std
::
vector
<
int64_t
>>
title1
,
title2
,
title3
,
l1
;
std
::
vector
<
size_t
>
title1_lod
,
title2_lod
,
title3_lod
,
l1_lod
;
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
num_samples
;
// total number of samples
std
::
vector
<
size_t
>
lod1
,
lod2
,
lod3
,
l1_lod
;
size_t
batch_iter
{
0
},
batch_size
{
1
},
num_samples
;
// total number of samples
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
...
...
@@ -33,41 +30,11 @@ struct DataRecord {
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
title1_all
.
size
())
{
data
.
title1_all
.
assign
(
title1_all
.
begin
()
+
batch_iter
,
title1_all
.
begin
()
+
batch_end
);
data
.
title2_all
.
assign
(
title2_all
.
begin
()
+
batch_iter
,
title2_all
.
begin
()
+
batch_end
);
data
.
title3_all
.
assign
(
title3_all
.
begin
()
+
batch_iter
,
title3_all
.
begin
()
+
batch_end
);
data
.
l1_all
.
assign
(
l1_all
.
begin
()
+
batch_iter
,
l1_all
.
begin
()
+
batch_end
);
// Prepare LoDs
data
.
title1_lod
.
push_back
(
0
);
data
.
title2_lod
.
push_back
(
0
);
data
.
title3_lod
.
push_back
(
0
);
data
.
l1_lod
.
push_back
(
0
);
CHECK
(
!
data
.
title1_all
.
empty
());
CHECK
(
!
data
.
title2_all
.
empty
());
CHECK
(
!
data
.
title3_all
.
empty
());
CHECK
(
!
data
.
l1_all
.
empty
());
CHECK_EQ
(
data
.
title1_all
.
size
(),
data
.
title2_all
.
size
());
CHECK_EQ
(
data
.
title1_all
.
size
(),
data
.
title3_all
.
size
());
CHECK_EQ
(
data
.
title1_all
.
size
(),
data
.
l1_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
title1_all
.
size
();
j
++
)
{
data
.
title1
.
push_back
(
data
.
title1_all
[
j
]);
data
.
title2
.
push_back
(
data
.
title2_all
[
j
]);
data
.
title3
.
push_back
(
data
.
title3_all
[
j
]);
data
.
l1
.
push_back
(
data
.
l1_all
[
j
]);
// calculate lod
data
.
title1_lod
.
push_back
(
data
.
title1_lod
.
back
()
+
data
.
title1_all
[
j
].
size
());
data
.
title2_lod
.
push_back
(
data
.
title2_lod
.
back
()
+
data
.
title2_all
[
j
].
size
());
data
.
title3_lod
.
push_back
(
data
.
title3_lod
.
back
()
+
data
.
title3_all
[
j
].
size
());
data
.
l1_lod
.
push_back
(
data
.
l1_lod
.
back
()
+
data
.
l1_all
[
j
].
size
());
}
if
(
batch_end
<=
title1
.
size
())
{
GetInputPerBatch
(
title1
,
&
data
.
title1
,
&
data
.
lod1
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
title2
,
&
data
.
title2
,
&
data
.
lod2
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
title3
,
&
data
.
title3
,
&
data
.
lod3
,
batch_iter
,
batch_end
);
GetInputPerBatch
(
l1
,
&
data
.
l1
,
&
data
.
l1_lod
,
batch_iter
,
batch_end
);
}
batch_iter
+=
batch_size
;
return
data
;
...
...
@@ -92,10 +59,10 @@ struct DataRecord {
// load l1 data
std
::
vector
<
int64_t
>
l1_data
;
split_to_int64
(
data
[
3
],
' '
,
&
l1_data
);
title1
_all
.
push_back
(
std
::
move
(
title1_data
));
title2
_all
.
push_back
(
std
::
move
(
title2_data
));
title3
_all
.
push_back
(
std
::
move
(
title3_data
));
l1
_all
.
push_back
(
std
::
move
(
l1_data
));
title1
.
push_back
(
std
::
move
(
title1_data
));
title2
.
push_back
(
std
::
move
(
title2_data
));
title3
.
push_back
(
std
::
move
(
title3_data
));
l1
.
push_back
(
std
::
move
(
l1_data
));
}
num_samples
=
num_lines
;
}
...
...
@@ -109,24 +76,11 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
title3_tensor
.
name
=
"title3"
;
l1_tensor
.
name
=
"l1"
;
auto
one_batch
=
data
->
NextBatch
();
int
title1_size
=
one_batch
.
title1_lod
[
one_batch
.
title1_lod
.
size
()
-
1
];
title1_tensor
.
shape
.
assign
({
title1_size
,
1
});
title1_tensor
.
lod
.
assign
({
one_batch
.
title1_lod
});
int
title2_size
=
one_batch
.
title2_lod
[
one_batch
.
title2_lod
.
size
()
-
1
];
title2_tensor
.
shape
.
assign
({
title2_size
,
1
});
title2_tensor
.
lod
.
assign
({
one_batch
.
title2_lod
});
int
title3_size
=
one_batch
.
title3_lod
[
one_batch
.
title3_lod
.
size
()
-
1
];
title3_tensor
.
shape
.
assign
({
title3_size
,
1
});
title3_tensor
.
lod
.
assign
({
one_batch
.
title3_lod
});
int
l1_size
=
one_batch
.
l1_lod
[
one_batch
.
l1_lod
.
size
()
-
1
];
l1_tensor
.
shape
.
assign
({
l1_size
,
1
});
l1_tensor
.
lod
.
assign
({
one_batch
.
l1_lod
});
// assign data
TensorAssignData
<
int64_t
>
(
&
title1_tensor
,
one_batch
.
title1
);
TensorAssignData
<
int64_t
>
(
&
title2_tensor
,
one_batch
.
title2
);
TensorAssignData
<
int64_t
>
(
&
title3_tensor
,
one_batch
.
title3
);
TensorAssignData
<
int64_t
>
(
&
l1_tensor
,
one_batch
.
l1
);
TensorAssignData
<
int64_t
>
(
&
title1_tensor
,
one_batch
.
title1
,
one_batch
.
lod1
);
TensorAssignData
<
int64_t
>
(
&
title2_tensor
,
one_batch
.
title2
,
one_batch
.
lod2
);
TensorAssignData
<
int64_t
>
(
&
title3_tensor
,
one_batch
.
title3
,
one_batch
.
lod3
);
TensorAssignData
<
int64_t
>
(
&
l1_tensor
,
one_batch
.
l1
,
one_batch
.
l1_lod
);
// Set inputs.
input_slots
->
assign
({
title1_tensor
,
title2_tensor
,
title3_tensor
,
l1_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
...
...
paddle/fluid/inference/tests/api/tester_helper.h
浏览文件 @
85471533
...
...
@@ -176,6 +176,18 @@ void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
(
*
inputs
).
emplace_back
(
input_slots
);
}
void
GetInputPerBatch
(
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
in
,
std
::
vector
<
std
::
vector
<
int64_t
>>
*
out
,
std
::
vector
<
size_t
>
*
lod
,
size_t
batch_iter
,
size_t
batch_end
)
{
lod
->
clear
();
lod
->
push_back
(
0
);
for
(
auto
it
=
in
.
begin
()
+
batch_iter
;
it
<
in
.
begin
()
+
batch_end
;
it
++
)
{
out
->
push_back
(
*
it
);
lod
->
push_back
(
lod
->
back
()
+
(
*
it
).
size
());
// calculate lod
}
}
void
TestOneThreadPrediction
(
const
PaddlePredictor
::
Config
*
config
,
const
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
&
inputs
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录