未验证 提交 852324d6 编写于 作者: Z zhiboniu 提交者: GitHub

update attribute docs (#6574)

上级 acb233a9
...@@ -142,13 +142,12 @@ class AttrDetector(Detector): ...@@ -142,13 +142,12 @@ class AttrDetector(Detector):
bag_label = bag if bag_score > self.threshold else 'No bag' bag_label = bag if bag_score > self.threshold else 'No bag'
label_res.append(bag_label) label_res.append(bag_label)
# upper # upper
upper_res = res[4:8]
upper_label = 'Upper:' upper_label = 'Upper:'
sleeve = 'LongSleeve' if res[3] > res[2] else 'ShortSleeve' sleeve = 'LongSleeve' if res[3] > res[2] else 'ShortSleeve'
upper_label += ' {}'.format(sleeve) upper_label += ' {}'.format(sleeve)
for i, r in enumerate(upper_res): upper_res = res[4:8]
if r > self.threshold: if np.max(upper_res) > self.threshold:
upper_label += ' {}'.format(upper_list[i]) upper_label += ' {}'.format(upper_list[np.argmax(upper_res)])
label_res.append(upper_label) label_res.append(upper_label)
# lower # lower
lower_res = res[8:14] lower_res = res[8:14]
......
...@@ -192,3 +192,102 @@ ATTR: ...@@ -192,3 +192,102 @@ ATTR:
删减属性同理。 删减属性同理。
例如,如果不需要年龄属性,则位置[19, 20, 21]的数值可以去掉。只需在train.txt中标注的26个数字中全部删除第19-21位数值即可,同时标注数据时也不再需要标注这3位属性值。 例如,如果不需要年龄属性,则位置[19, 20, 21]的数值可以去掉。只需在train.txt中标注的26个数字中全部删除第19-21位数值即可,同时标注数据时也不再需要标注这3位属性值。
## 修改后处理代码
修改了属性定义后,pipeline后处理部分也需要做相应修改,主要影响结果可视化时的显示结果。
相应代码在路径`deploy/pipeline/pphuman/attr_infer.py`文件中`postprocess`函数。
其函数实现说明如下:
```
# 函数入口
def postprocess(self, inputs, result):
# postprocess output of predictor
im_results = result['output']
# 1) 定义各组属性实际意义,其数量及位置与输出结果中占用位数一一对应。
labels = self.pred_config.labels
age_list = ['AgeLess18', 'Age18-60', 'AgeOver60']
direct_list = ['Front', 'Side', 'Back']
bag_list = ['HandBag', 'ShoulderBag', 'Backpack']
upper_list = ['UpperStride', 'UpperLogo', 'UpperPlaid', 'UpperSplice']
lower_list = [
'LowerStripe', 'LowerPattern', 'LongCoat', 'Trousers', 'Shorts',
'Skirt&Dress'
]
# 2) 部分属性所用阈值与通用值有明显区别,单独设置
glasses_threshold = 0.3
hold_threshold = 0.6
batch_res = []
for res in im_results:
res = res.tolist()
label_res = []
# gender
# 3) 单个位置属性类别,判断该位置是否大于阈值,来分配二分类结果
gender = 'Female' if res[22] > self.threshold else 'Male'
label_res.append(gender)
# age
# 4)多个位置属性类别,N选一形式,选择得分最高的属性
age = age_list[np.argmax(res[19:22])]
label_res.append(age)
# direction
direction = direct_list[np.argmax(res[23:])]
label_res.append(direction)
# glasses
glasses = 'Glasses: '
if res[1] > glasses_threshold:
glasses += 'True'
else:
glasses += 'False'
label_res.append(glasses)
# hat
hat = 'Hat: '
if res[0] > self.threshold:
hat += 'True'
else:
hat += 'False'
label_res.append(hat)
# hold obj
hold_obj = 'HoldObjectsInFront: '
if res[18] > hold_threshold:
hold_obj += 'True'
else:
hold_obj += 'False'
label_res.append(hold_obj)
# bag
bag = bag_list[np.argmax(res[15:18])]
bag_score = res[15 + np.argmax(res[15:18])]
bag_label = bag if bag_score > self.threshold else 'No bag'
label_res.append(bag_label)
# upper
# 5)同一类属性,分为两组(这里是款式和花色),每小组内单独选择,相当于两组不同属性。
upper_label = 'Upper:'
sleeve = 'LongSleeve' if res[3] > res[2] else 'ShortSleeve'
upper_label += ' {}'.format(sleeve)
upper_res = res[4:8]
if np.max(upper_res) > self.threshold:
upper_label += ' {}'.format(upper_list[np.argmax(upper_res)])
label_res.append(upper_label)
# lower
lower_res = res[8:14]
lower_label = 'Lower: '
has_lower = False
for i, l in enumerate(lower_res):
if l > self.threshold:
lower_label += ' {}'.format(lower_list[i])
has_lower = True
if not has_lower:
lower_label += ' {}'.format(lower_list[np.argmax(lower_res)])
label_res.append(lower_label)
# shoe
shoe = 'Boots' if res[14] > self.threshold else 'No boots'
label_res.append(shoe)
batch_res.append(label_res)
result = {'output': batch_res}
return result
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册