Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
84faecbc
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 2 年 前同步成功
通知
708
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
84faecbc
编写于
5月 25, 2022
作者:
J
JYChen
提交者:
GitHub
5月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cpp infer support for solov2 (#6050)
上级
1d8c3a7e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
254 addition
and
147 deletion
+254
-147
deploy/cpp/include/object_detector.h
deploy/cpp/include/object_detector.h
+32
-35
deploy/cpp/src/object_detector.cc
deploy/cpp/src/object_detector.cc
+222
-112
未找到文件。
deploy/cpp/include/object_detector.h
浏览文件 @
84faecbc
...
@@ -25,7 +25,7 @@
...
@@ -25,7 +25,7 @@
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "paddle_inference_api.h"
// NOLINT
#include "paddle_inference_api.h" // NOLINT
#include "include/config_parser.h"
#include "include/config_parser.h"
#include "include/picodet_postprocess.h"
#include "include/picodet_postprocess.h"
...
@@ -33,29 +33,25 @@
...
@@ -33,29 +33,25 @@
#include "include/utils.h"
#include "include/utils.h"
using
namespace
paddle_infer
;
using
namespace
paddle_infer
;
namespace
PaddleDetection
{
namespace
PaddleDetection
{
// Generate visualization colormap for each class
// Generate visualization colormap for each class
std
::
vector
<
int
>
GenerateColorMap
(
int
num_class
);
std
::
vector
<
int
>
GenerateColorMap
(
int
num_class
);
// Visualiztion Detection Result
// Visualiztion Detection Result
cv
::
Mat
VisualizeResult
(
cv
::
Mat
const
cv
::
Mat
&
img
,
VisualizeResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
PaddleDetection
::
ObjectResult
>&
results
,
const
std
::
vector
<
PaddleDetection
::
ObjectResult
>
&
results
,
const
std
::
vector
<
std
::
string
>&
lables
,
const
std
::
vector
<
std
::
string
>
&
lables
,
const
std
::
vector
<
int
>&
colormap
,
const
std
::
vector
<
int
>
&
colormap
,
const
bool
is_rbox
);
const
bool
is_rbox
);
class
ObjectDetector
{
class
ObjectDetector
{
public:
public:
explicit
ObjectDetector
(
const
std
::
string
&
model_dir
,
explicit
ObjectDetector
(
const
std
::
string
&
model_dir
,
const
std
::
string
&
device
=
"CPU"
,
const
std
::
string
&
device
=
"CPU"
,
bool
use_mkldnn
=
false
,
bool
use_mkldnn
=
false
,
int
cpu_threads
=
1
,
int
cpu_threads
=
1
,
const
std
::
string
&
run_mode
=
"paddle"
,
const
std
::
string
&
run_mode
=
"paddle"
,
const
int
batch_size
=
1
,
const
int
gpu_id
=
0
,
const
int
batch_size
=
1
,
const
int
gpu_id
=
0
,
const
int
trt_min_shape
=
1
,
const
int
trt_min_shape
=
1
,
const
int
trt_max_shape
=
1280
,
const
int
trt_max_shape
=
1280
,
const
int
trt_opt_shape
=
640
,
const
int
trt_opt_shape
=
640
,
...
@@ -78,25 +74,22 @@ class ObjectDetector {
...
@@ -78,25 +74,22 @@ class ObjectDetector {
}
}
// Load Paddle inference model
// Load Paddle inference model
void
LoadModel
(
const
std
::
string
&
model_dir
,
void
LoadModel
(
const
std
::
string
&
model_dir
,
const
int
batch_size
=
1
,
const
int
batch_size
=
1
,
const
std
::
string
&
run_mode
=
"paddle"
);
const
std
::
string
&
run_mode
=
"paddle"
);
// Run predictor
// Run predictor
void
Predict
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
void
Predict
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
const
double
threshold
=
0.5
,
const
double
threshold
=
0.5
,
const
int
warmup
=
0
,
const
int
repeats
=
1
,
const
int
warmup
=
0
,
std
::
vector
<
PaddleDetection
::
ObjectResult
>
*
result
=
nullptr
,
const
int
repeats
=
1
,
std
::
vector
<
int
>
*
bbox_num
=
nullptr
,
std
::
vector
<
PaddleDetection
::
ObjectResult
>*
result
=
nullptr
,
std
::
vector
<
double
>
*
times
=
nullptr
);
std
::
vector
<
int
>*
bbox_num
=
nullptr
,
std
::
vector
<
double
>*
times
=
nullptr
);
// Get Model Label list
// Get Model Label list
const
std
::
vector
<
std
::
string
>
&
GetLabelList
()
const
{
const
std
::
vector
<
std
::
string
>
&
GetLabelList
()
const
{
return
config_
.
label_list_
;
return
config_
.
label_list_
;
}
}
private:
private:
std
::
string
device_
=
"CPU"
;
std
::
string
device_
=
"CPU"
;
int
gpu_id_
=
0
;
int
gpu_id_
=
0
;
int
cpu_math_library_num_threads_
=
1
;
int
cpu_math_library_num_threads_
=
1
;
...
@@ -108,14 +101,18 @@ class ObjectDetector {
...
@@ -108,14 +101,18 @@ class ObjectDetector {
int
trt_opt_shape_
=
640
;
int
trt_opt_shape_
=
640
;
bool
trt_calib_mode_
=
false
;
bool
trt_calib_mode_
=
false
;
// Preprocess image and copy data to input buffer
// Preprocess image and copy data to input buffer
void
Preprocess
(
const
cv
::
Mat
&
image_mat
);
void
Preprocess
(
const
cv
::
Mat
&
image_mat
);
// Postprocess result
// Postprocess result
void
Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
void
Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
std
::
vector
<
PaddleDetection
::
ObjectResult
>*
result
,
std
::
vector
<
PaddleDetection
::
ObjectResult
>
*
result
,
std
::
vector
<
int
>
bbox_num
,
std
::
vector
<
int
>
bbox_num
,
std
::
vector
<
float
>
output_data_
,
std
::
vector
<
float
>
output_data_
,
std
::
vector
<
int
>
output_mask_data_
,
bool
is_rbox
);
std
::
vector
<
int
>
output_mask_data_
,
bool
is_rbox
);
void
SOLOv2Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
std
::
vector
<
ObjectResult
>
*
result
,
std
::
vector
<
int
>
*
bbox_num
,
std
::
vector
<
int
>
out_bbox_num_data_
,
std
::
vector
<
int64_t
>
out_label_data_
,
std
::
vector
<
float
>
out_score_data_
,
std
::
vector
<
uint8_t
>
out_global_mask_data_
,
float
threshold
=
0.5
);
std
::
shared_ptr
<
Predictor
>
predictor_
;
std
::
shared_ptr
<
Predictor
>
predictor_
;
Preprocessor
preprocessor_
;
Preprocessor
preprocessor_
;
...
@@ -124,4 +121,4 @@ class ObjectDetector {
...
@@ -124,4 +121,4 @@ class ObjectDetector {
ConfigPaser
config_
;
ConfigPaser
config_
;
};
};
}
// namespace PaddleDetection
}
// namespace PaddleDetection
deploy/cpp/src/object_detector.cc
浏览文件 @
84faecbc
...
@@ -41,17 +41,12 @@ void ObjectDetector::LoadModel(const std::string &model_dir,
...
@@ -41,17 +41,12 @@ void ObjectDetector::LoadModel(const std::string &model_dir,
}
else
if
(
run_mode
==
"trt_int8"
)
{
}
else
if
(
run_mode
==
"trt_int8"
)
{
precision
=
paddle_infer
::
Config
::
Precision
::
kInt8
;
precision
=
paddle_infer
::
Config
::
Precision
::
kInt8
;
}
else
{
}
else
{
printf
(
printf
(
"run_mode should be 'paddle', 'trt_fp32', 'trt_fp16' or "
"run_mode should be 'paddle', 'trt_fp32', 'trt_fp16' or "
"'trt_int8'"
);
"'trt_int8'"
);
}
}
// set tensorrt
// set tensorrt
config
.
EnableTensorRtEngine
(
1
<<
30
,
config
.
EnableTensorRtEngine
(
1
<<
30
,
batch_size
,
this
->
min_subgraph_size_
,
batch_size
,
precision
,
false
,
this
->
trt_calib_mode_
);
this
->
min_subgraph_size_
,
precision
,
false
,
this
->
trt_calib_mode_
);
// set use dynamic shape
// set use dynamic shape
if
(
this
->
use_dynamic_shape_
)
{
if
(
this
->
use_dynamic_shape_
)
{
...
@@ -69,8 +64,8 @@ void ObjectDetector::LoadModel(const std::string &model_dir,
...
@@ -69,8 +64,8 @@ void ObjectDetector::LoadModel(const std::string &model_dir,
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
map_opt_input_shape
=
{
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
map_opt_input_shape
=
{
{
"image"
,
opt_input_shape
}};
{
"image"
,
opt_input_shape
}};
config
.
SetTRTDynamicShapeInfo
(
config
.
SetTRTDynamicShapeInfo
(
map_min_input_shape
,
map_max_input_shape
,
map_min_input_shape
,
map_max_input_shape
,
map_opt_input_shape
);
map_opt_input_shape
);
std
::
cout
<<
"TensorRT dynamic shape enabled"
<<
std
::
endl
;
std
::
cout
<<
"TensorRT dynamic shape enabled"
<<
std
::
endl
;
}
}
}
}
...
@@ -95,12 +90,11 @@ void ObjectDetector::LoadModel(const std::string &model_dir,
...
@@ -95,12 +90,11 @@ void ObjectDetector::LoadModel(const std::string &model_dir,
}
}
// Visualiztion MaskDetector results
// Visualiztion MaskDetector results
cv
::
Mat
VisualizeResult
(
cv
::
Mat
const
cv
::
Mat
&
img
,
VisualizeResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
PaddleDetection
::
ObjectResult
>
&
results
,
const
std
::
vector
<
PaddleDetection
::
ObjectResult
>
&
results
,
const
std
::
vector
<
std
::
string
>
&
lables
,
const
std
::
vector
<
std
::
string
>
&
lables
,
const
std
::
vector
<
int
>
&
colormap
,
const
std
::
vector
<
int
>
&
colormap
,
const
bool
is_rbox
=
false
)
{
const
bool
is_rbox
=
false
)
{
cv
::
Mat
vis_img
=
img
.
clone
();
cv
::
Mat
vis_img
=
img
.
clone
();
int
img_h
=
vis_img
.
rows
;
int
img_h
=
vis_img
.
rows
;
int
img_w
=
vis_img
.
cols
;
int
img_w
=
vis_img
.
cols
;
...
@@ -149,16 +143,10 @@ cv::Mat VisualizeResult(
...
@@ -149,16 +143,10 @@ cv::Mat VisualizeResult(
std
::
vector
<
cv
::
Mat
>
contours
;
std
::
vector
<
cv
::
Mat
>
contours
;
cv
::
Mat
hierarchy
;
cv
::
Mat
hierarchy
;
mask
.
convertTo
(
mask
,
CV_8U
);
mask
.
convertTo
(
mask
,
CV_8U
);
cv
::
findContours
(
cv
::
findContours
(
mask
,
contours
,
hierarchy
,
cv
::
RETR_CCOMP
,
mask
,
contours
,
hierarchy
,
cv
::
RETR_CCOMP
,
cv
::
CHAIN_APPROX_SIMPLE
);
cv
::
CHAIN_APPROX_SIMPLE
);
cv
::
drawContours
(
colored_img
,
cv
::
drawContours
(
colored_img
,
contours
,
-
1
,
roi_color
,
-
1
,
cv
::
LINE_8
,
contours
,
hierarchy
,
100
);
-
1
,
roi_color
,
-
1
,
cv
::
LINE_8
,
hierarchy
,
100
);
cv
::
Mat
debug_roi
=
vis_img
;
cv
::
Mat
debug_roi
=
vis_img
;
colored_img
=
0.4
*
colored_img
+
0.6
*
vis_img
;
colored_img
=
0.4
*
colored_img
+
0.6
*
vis_img
;
...
@@ -170,19 +158,13 @@ cv::Mat VisualizeResult(
...
@@ -170,19 +158,13 @@ cv::Mat VisualizeResult(
origin
.
y
=
results
[
i
].
rect
[
1
];
origin
.
y
=
results
[
i
].
rect
[
1
];
// Configure text background
// Configure text background
cv
::
Rect
text_back
=
cv
::
Rect
(
results
[
i
].
rect
[
0
],
cv
::
Rect
text_back
=
results
[
i
].
rect
[
1
]
-
text_size
.
height
,
cv
::
Rect
(
results
[
i
].
rect
[
0
],
results
[
i
].
rect
[
1
]
-
text_size
.
height
,
text_size
.
width
,
text_size
.
width
,
text_size
.
height
);
text_size
.
height
);
// Draw text, and background
// Draw text, and background
cv
::
rectangle
(
vis_img
,
text_back
,
roi_color
,
-
1
);
cv
::
rectangle
(
vis_img
,
text_back
,
roi_color
,
-
1
);
cv
::
putText
(
vis_img
,
cv
::
putText
(
vis_img
,
text
,
origin
,
font_face
,
font_scale
,
text
,
cv
::
Scalar
(
255
,
255
,
255
),
thickness
);
origin
,
font_face
,
font_scale
,
cv
::
Scalar
(
255
,
255
,
255
),
thickness
);
}
}
return
vis_img
;
return
vis_img
;
}
}
...
@@ -197,10 +179,8 @@ void ObjectDetector::Preprocess(const cv::Mat &ori_im) {
...
@@ -197,10 +179,8 @@ void ObjectDetector::Preprocess(const cv::Mat &ori_im) {
void
ObjectDetector
::
Postprocess
(
void
ObjectDetector
::
Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
const
std
::
vector
<
cv
::
Mat
>
mats
,
std
::
vector
<
PaddleDetection
::
ObjectResult
>
*
result
,
std
::
vector
<
PaddleDetection
::
ObjectResult
>
*
result
,
std
::
vector
<
int
>
bbox_num
,
std
::
vector
<
int
>
bbox_num
,
std
::
vector
<
float
>
output_data_
,
std
::
vector
<
float
>
output_data_
,
std
::
vector
<
int
>
output_mask_data_
,
bool
is_rbox
=
false
)
{
std
::
vector
<
int
>
output_mask_data_
,
bool
is_rbox
=
false
)
{
result
->
clear
();
result
->
clear
();
int
start_idx
=
0
;
int
start_idx
=
0
;
int
total_num
=
std
::
accumulate
(
bbox_num
.
begin
(),
bbox_num
.
end
(),
0
);
int
total_num
=
std
::
accumulate
(
bbox_num
.
begin
(),
bbox_num
.
end
(),
0
);
...
@@ -267,9 +247,81 @@ void ObjectDetector::Postprocess(
...
@@ -267,9 +247,81 @@ void ObjectDetector::Postprocess(
}
}
}
}
// This function is to convert output result from SOLOv2 to class ObjectResult
void
ObjectDetector
::
SOLOv2Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
std
::
vector
<
ObjectResult
>
*
result
,
std
::
vector
<
int
>
*
bbox_num
,
std
::
vector
<
int
>
out_bbox_num_data_
,
std
::
vector
<
int64_t
>
out_label_data_
,
std
::
vector
<
float
>
out_score_data_
,
std
::
vector
<
uint8_t
>
out_global_mask_data_
,
float
threshold
)
{
for
(
int
im_id
=
0
;
im_id
<
mats
.
size
();
im_id
++
)
{
cv
::
Mat
mat
=
mats
[
im_id
];
int
valid_bbox_count
=
0
;
for
(
int
bbox_id
=
0
;
bbox_id
<
out_bbox_num_data_
[
im_id
];
++
bbox_id
)
{
if
(
out_score_data_
[
bbox_id
]
>=
threshold
)
{
ObjectResult
result_item
;
result_item
.
class_id
=
out_label_data_
[
bbox_id
];
result_item
.
confidence
=
out_score_data_
[
bbox_id
];
std
::
vector
<
int
>
global_mask
;
for
(
int
k
=
0
;
k
<
mat
.
rows
*
mat
.
cols
;
++
k
)
{
global_mask
.
push_back
(
static_cast
<
int
>
(
out_global_mask_data_
[
k
+
bbox_id
*
mat
.
rows
*
mat
.
cols
]));
}
// find minimize bounding box from mask
cv
::
Mat
mask
(
mat
.
rows
,
mat
.
cols
,
CV_32SC1
);
std
::
memcpy
(
mask
.
data
,
global_mask
.
data
(),
global_mask
.
size
()
*
sizeof
(
int
));
cv
::
Mat
mask_fp
;
cv
::
Mat
rowSum
;
cv
::
Mat
colSum
;
std
::
vector
<
float
>
sum_of_row
(
mat
.
rows
);
std
::
vector
<
float
>
sum_of_col
(
mat
.
cols
);
mask
.
convertTo
(
mask_fp
,
CV_32FC1
);
cv
::
reduce
(
mask_fp
,
colSum
,
0
,
CV_REDUCE_SUM
,
CV_32FC1
);
cv
::
reduce
(
mask_fp
,
rowSum
,
1
,
CV_REDUCE_SUM
,
CV_32FC1
);
for
(
int
row_id
=
0
;
row_id
<
mat
.
rows
;
++
row_id
)
{
sum_of_row
[
row_id
]
=
rowSum
.
at
<
float
>
(
row_id
,
0
);
}
for
(
int
col_id
=
0
;
col_id
<
mat
.
cols
;
++
col_id
)
{
sum_of_col
[
col_id
]
=
colSum
.
at
<
float
>
(
0
,
col_id
);
}
auto
it
=
std
::
find_if
(
sum_of_row
.
begin
(),
sum_of_row
.
end
(),
[](
int
x
)
{
return
x
>
0.5
;
});
int
y1
=
std
::
distance
(
sum_of_row
.
begin
(),
it
);
auto
it2
=
std
::
find_if
(
sum_of_col
.
begin
(),
sum_of_col
.
end
(),
[](
int
x
)
{
return
x
>
0.5
;
});
int
x1
=
std
::
distance
(
sum_of_col
.
begin
(),
it2
);
auto
rit
=
std
::
find_if
(
sum_of_row
.
rbegin
(),
sum_of_row
.
rend
(),
[](
int
x
)
{
return
x
>
0.5
;
});
int
y2
=
std
::
distance
(
rit
,
sum_of_row
.
rend
());
auto
rit2
=
std
::
find_if
(
sum_of_col
.
rbegin
(),
sum_of_col
.
rend
(),
[](
int
x
)
{
return
x
>
0.5
;
});
int
x2
=
std
::
distance
(
rit2
,
sum_of_col
.
rend
());
result_item
.
rect
=
{
x1
,
y1
,
x2
,
y2
};
result_item
.
mask
=
global_mask
;
result
->
push_back
(
result_item
);
valid_bbox_count
++
;
}
}
bbox_num
->
push_back
(
valid_bbox_count
);
}
}
void
ObjectDetector
::
Predict
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
void
ObjectDetector
::
Predict
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
const
double
threshold
,
const
double
threshold
,
const
int
warmup
,
const
int
warmup
,
const
int
repeats
,
const
int
repeats
,
std
::
vector
<
PaddleDetection
::
ObjectResult
>
*
result
,
std
::
vector
<
PaddleDetection
::
ObjectResult
>
*
result
,
std
::
vector
<
int
>
*
bbox_num
,
std
::
vector
<
int
>
*
bbox_num
,
...
@@ -285,6 +337,11 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
...
@@ -285,6 +337,11 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
std
::
vector
<
int
>
out_bbox_num_data_
;
std
::
vector
<
int
>
out_bbox_num_data_
;
std
::
vector
<
int
>
out_mask_data_
;
std
::
vector
<
int
>
out_mask_data_
;
// these parameters are for SOLOv2 output
std
::
vector
<
float
>
out_score_data_
;
std
::
vector
<
uint8_t
>
out_global_mask_data_
;
std
::
vector
<
int64_t
>
out_label_data_
;
// in_net img for each batch
// in_net img for each batch
std
::
vector
<
cv
::
Mat
>
in_net_img_all
(
batch_size
);
std
::
vector
<
cv
::
Mat
>
in_net_img_all
(
batch_size
);
...
@@ -298,8 +355,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
...
@@ -298,8 +355,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
scale_factor_all
[
bs_idx
*
2
]
=
inputs_
.
scale_factor_
[
0
];
scale_factor_all
[
bs_idx
*
2
]
=
inputs_
.
scale_factor_
[
0
];
scale_factor_all
[
bs_idx
*
2
+
1
]
=
inputs_
.
scale_factor_
[
1
];
scale_factor_all
[
bs_idx
*
2
+
1
]
=
inputs_
.
scale_factor_
[
1
];
in_data_all
.
insert
(
in_data_all
.
insert
(
in_data_all
.
end
(),
inputs_
.
im_data_
.
begin
(),
in_data_all
.
end
(),
inputs_
.
im_data_
.
begin
(),
inputs_
.
im_data_
.
end
());
inputs_
.
im_data_
.
end
());
// collect in_net img
// collect in_net img
in_net_img_all
[
bs_idx
]
=
inputs_
.
in_net_im_
;
in_net_img_all
[
bs_idx
]
=
inputs_
.
in_net_im_
;
...
@@ -320,8 +377,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
...
@@ -320,8 +377,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
pad_data
.
resize
(
rc
*
rh
*
rw
);
pad_data
.
resize
(
rc
*
rh
*
rw
);
float
*
base
=
pad_data
.
data
();
float
*
base
=
pad_data
.
data
();
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
cv
::
extractChannel
(
cv
::
extractChannel
(
pad_img
,
pad_img
,
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
base
+
i
*
rh
*
rw
),
i
);
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
base
+
i
*
rh
*
rw
),
i
);
}
}
in_data_all
.
insert
(
in_data_all
.
end
(),
pad_data
.
begin
(),
pad_data
.
end
());
in_data_all
.
insert
(
in_data_all
.
end
(),
pad_data
.
begin
(),
pad_data
.
end
());
}
}
...
@@ -354,58 +411,118 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
...
@@ -354,58 +411,118 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
bool
is_rbox
=
false
;
bool
is_rbox
=
false
;
int
reg_max
=
7
;
int
reg_max
=
7
;
int
num_class
=
80
;
int
num_class
=
80
;
// warmup
for
(
int
i
=
0
;
i
<
warmup
;
i
++
)
{
auto
inference_start
=
std
::
chrono
::
steady_clock
::
now
();
predictor_
->
Run
();
if
(
config_
.
arch_
==
"SOLOv2"
)
{
// Get output tensor
// warmup
auto
output_names
=
predictor_
->
GetOutputNames
();
for
(
int
i
=
0
;
i
<
warmup
;
i
++
)
{
for
(
int
j
=
0
;
j
<
output_names
.
size
();
j
++
)
{
predictor_
->
Run
();
auto
output_tensor
=
predictor_
->
GetOutputHandle
(
output_names
[
j
]);
// Get output tensor
std
::
vector
<
int
>
output_shape
=
output_tensor
->
shape
();
auto
output_names
=
predictor_
->
GetOutputNames
();
int
out_num
=
std
::
accumulate
(
for
(
int
j
=
0
;
j
<
output_names
.
size
();
j
++
)
{
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
auto
output_tensor
=
predictor_
->
GetOutputHandle
(
output_names
[
j
]);
if
(
config_
.
mask_
&&
(
j
==
2
))
{
std
::
vector
<
int
>
output_shape
=
output_tensor
->
shape
();
out_mask_data_
.
resize
(
out_num
);
int
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
output_tensor
->
CopyToCpu
(
out_mask_data_
.
data
());
1
,
std
::
multiplies
<
int
>
());
}
else
if
(
output_tensor
->
type
()
==
paddle_infer
::
DataType
::
INT32
)
{
if
(
j
==
0
)
{
out_bbox_num_data_
.
resize
(
out_num
);
out_bbox_num_data_
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_bbox_num_data_
.
data
());
output_tensor
->
CopyToCpu
(
out_bbox_num_data_
.
data
());
}
else
{
}
else
if
(
j
==
1
)
{
std
::
vector
<
float
>
out_data
;
out_label_data_
.
resize
(
out_num
);
out_data
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_label_data_
.
data
());
output_tensor
->
CopyToCpu
(
out_data
.
data
());
}
else
if
(
j
==
2
)
{
out_tensor_list
.
push_back
(
out_data
);
out_score_data_
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_score_data_
.
data
());
}
else
if
(
config_
.
mask_
&&
(
j
==
3
))
{
out_global_mask_data_
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_global_mask_data_
.
data
());
}
}
}
}
}
}
auto
inference_start
=
std
::
chrono
::
steady_clock
::
now
();
inference_start
=
std
::
chrono
::
steady_clock
::
now
();
for
(
int
i
=
0
;
i
<
repeats
;
i
++
)
{
for
(
int
i
=
0
;
i
<
repeats
;
i
++
)
{
predictor_
->
Run
();
predictor_
->
Run
();
// Get output tensor
// Get output tensor
out_tensor_list
.
clear
();
out_tensor_list
.
clear
();
output_shape_list
.
clear
();
output_shape_list
.
clear
();
auto
output_names
=
predictor_
->
GetOutputNames
();
auto
output_names
=
predictor_
->
GetOutputNames
();
for
(
int
j
=
0
;
j
<
output_names
.
size
();
j
++
)
{
for
(
int
j
=
0
;
j
<
output_names
.
size
();
j
++
)
{
auto
output_tensor
=
predictor_
->
GetOutputHandle
(
output_names
[
j
]);
auto
output_tensor
=
predictor_
->
GetOutputHandle
(
output_names
[
j
]);
std
::
vector
<
int
>
output_shape
=
output_tensor
->
shape
();
std
::
vector
<
int
>
output_shape
=
output_tensor
->
shape
();
int
out_num
=
std
::
accumulate
(
int
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
1
,
std
::
multiplies
<
int
>
());
output_shape_list
.
push_back
(
output_shape
);
output_shape_list
.
push_back
(
output_shape
);
if
(
config_
.
mask_
&&
(
j
==
2
))
{
if
(
j
==
0
)
{
out_mask_data_
.
resize
(
out_num
);
out_bbox_num_data_
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_mask_data_
.
data
());
output_tensor
->
CopyToCpu
(
out_bbox_num_data_
.
data
());
}
else
if
(
output_tensor
->
type
()
==
paddle_infer
::
DataType
::
INT32
)
{
}
else
if
(
j
==
1
)
{
out_bbox_num_data_
.
resize
(
out_num
);
out_label_data_
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_bbox_num_data_
.
data
());
output_tensor
->
CopyToCpu
(
out_label_data_
.
data
());
}
else
{
}
else
if
(
j
==
2
)
{
std
::
vector
<
float
>
out_data
;
out_score_data_
.
resize
(
out_num
);
out_data
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_score_data_
.
data
());
output_tensor
->
CopyToCpu
(
out_data
.
data
());
}
else
if
(
config_
.
mask_
&&
(
j
==
3
))
{
out_tensor_list
.
push_back
(
out_data
);
out_global_mask_data_
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_global_mask_data_
.
data
());
}
}
}
}
else
{
// warmup
for
(
int
i
=
0
;
i
<
warmup
;
i
++
)
{
predictor_
->
Run
();
// Get output tensor
auto
output_names
=
predictor_
->
GetOutputNames
();
for
(
int
j
=
0
;
j
<
output_names
.
size
();
j
++
)
{
auto
output_tensor
=
predictor_
->
GetOutputHandle
(
output_names
[
j
]);
std
::
vector
<
int
>
output_shape
=
output_tensor
->
shape
();
int
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
if
(
config_
.
mask_
&&
(
j
==
2
))
{
out_mask_data_
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_mask_data_
.
data
());
}
else
if
(
output_tensor
->
type
()
==
paddle_infer
::
DataType
::
INT32
)
{
out_bbox_num_data_
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_bbox_num_data_
.
data
());
}
else
{
std
::
vector
<
float
>
out_data
;
out_data
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_data
.
data
());
out_tensor_list
.
push_back
(
out_data
);
}
}
}
inference_start
=
std
::
chrono
::
steady_clock
::
now
();
for
(
int
i
=
0
;
i
<
repeats
;
i
++
)
{
predictor_
->
Run
();
// Get output tensor
out_tensor_list
.
clear
();
output_shape_list
.
clear
();
auto
output_names
=
predictor_
->
GetOutputNames
();
for
(
int
j
=
0
;
j
<
output_names
.
size
();
j
++
)
{
auto
output_tensor
=
predictor_
->
GetOutputHandle
(
output_names
[
j
]);
std
::
vector
<
int
>
output_shape
=
output_tensor
->
shape
();
int
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
output_shape_list
.
push_back
(
output_shape
);
if
(
config_
.
mask_
&&
(
j
==
2
))
{
out_mask_data_
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_mask_data_
.
data
());
}
else
if
(
output_tensor
->
type
()
==
paddle_infer
::
DataType
::
INT32
)
{
out_bbox_num_data_
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_bbox_num_data_
.
data
());
}
else
{
std
::
vector
<
float
>
out_data
;
out_data
.
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_data
.
data
());
out_tensor_list
.
push_back
(
out_data
);
}
}
}
}
}
}
}
auto
inference_end
=
std
::
chrono
::
steady_clock
::
now
();
auto
inference_end
=
std
::
chrono
::
steady_clock
::
now
();
auto
postprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
auto
postprocess_start
=
std
::
chrono
::
steady_clock
::
now
();
// Postprocessing result
// Postprocessing result
...
@@ -420,30 +537,23 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
...
@@ -420,30 +537,23 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
reg_max
=
output_shape_list
[
i
][
2
]
/
4
-
1
;
reg_max
=
output_shape_list
[
i
][
2
]
/
4
-
1
;
}
}
float
*
buffer
=
new
float
[
out_tensor_list
[
i
].
size
()];
float
*
buffer
=
new
float
[
out_tensor_list
[
i
].
size
()];
memcpy
(
buffer
,
memcpy
(
buffer
,
&
out_tensor_list
[
i
][
0
],
&
out_tensor_list
[
i
][
0
],
out_tensor_list
[
i
].
size
()
*
sizeof
(
float
));
out_tensor_list
[
i
].
size
()
*
sizeof
(
float
));
output_data_list_
.
push_back
(
buffer
);
output_data_list_
.
push_back
(
buffer
);
}
}
PaddleDetection
::
PicoDetPostProcess
(
PaddleDetection
::
PicoDetPostProcess
(
result
,
result
,
output_data_list_
,
config_
.
fpn_stride_
,
inputs_
.
im_shape_
,
output_data_list_
,
inputs_
.
scale_factor_
,
config_
.
nms_info_
[
"score_threshold"
].
as
<
float
>
(),
config_
.
fpn_stride_
,
config_
.
nms_info_
[
"nms_threshold"
].
as
<
float
>
(),
num_class
,
reg_max
);
inputs_
.
im_shape_
,
inputs_
.
scale_factor_
,
config_
.
nms_info_
[
"score_threshold"
].
as
<
float
>
(),
config_
.
nms_info_
[
"nms_threshold"
].
as
<
float
>
(),
num_class
,
reg_max
);
bbox_num
->
push_back
(
result
->
size
());
bbox_num
->
push_back
(
result
->
size
());
}
else
if
(
config_
.
arch_
==
"SOLOv2"
)
{
SOLOv2Postprocess
(
imgs
,
result
,
bbox_num
,
out_bbox_num_data_
,
out_label_data_
,
out_score_data_
,
out_global_mask_data_
,
threshold
);
}
else
{
}
else
{
is_rbox
=
output_shape_list
[
0
][
output_shape_list
[
0
].
size
()
-
1
]
%
10
==
0
;
is_rbox
=
output_shape_list
[
0
][
output_shape_list
[
0
].
size
()
-
1
]
%
10
==
0
;
Postprocess
(
imgs
,
Postprocess
(
imgs
,
result
,
out_bbox_num_data_
,
out_tensor_list
[
0
],
result
,
out_mask_data_
,
is_rbox
);
out_bbox_num_data_
,
out_tensor_list
[
0
],
out_mask_data_
,
is_rbox
);
for
(
int
k
=
0
;
k
<
out_bbox_num_data_
.
size
();
k
++
)
{
for
(
int
k
=
0
;
k
<
out_bbox_num_data_
.
size
();
k
++
)
{
int
tmp
=
out_bbox_num_data_
[
k
];
int
tmp
=
out_bbox_num_data_
[
k
];
bbox_num
->
push_back
(
tmp
);
bbox_num
->
push_back
(
tmp
);
...
@@ -479,4 +589,4 @@ std::vector<int> GenerateColorMap(int num_class) {
...
@@ -479,4 +589,4 @@ std::vector<int> GenerateColorMap(int num_class) {
return
colormap
;
return
colormap
;
}
}
}
// namespace PaddleDetection
}
// namespace PaddleDetection
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录