Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
84d9c690
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
84d9c690
编写于
2月 12, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments of yaming and qingqing
上级
e9fa7a7b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
86 addition
and
130 deletion
+86
-130
python/paddle/v2/fluid/layers/detection.py
python/paddle/v2/fluid/layers/detection.py
+86
-97
python/paddle/v2/fluid/nets.py
python/paddle/v2/fluid/nets.py
+0
-33
未找到文件。
python/paddle/v2/fluid/layers/detection.py
浏览文件 @
84d9c690
...
...
@@ -151,36 +151,36 @@ def prior_box(inputs,
<https://arxiv.org/abs/1512.02325>`_ .
Args:
inputs(list): The list of input Variables, the format
inputs(list
|tuple
): The list of input Variables, the format
of all Variables is NCHW.
image(Variable): The input image data of PriorBoxOp,
the layout is NCHW.
min_ratio(int): the min ratio of generated prior boxes.
max_ratio(int): the max ratio of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior
aspect_ratios(list
|tuple
): the aspect ratios of generated prior
boxes. The length of input and aspect_ratios must be equal.
base_size(int): the base_size is used to get min_size
and max_size according to min_ratio and max_ratio.
step_w(list
, optional, default=
None): Prior boxes step
step_w(list
|tuple|
None): Prior boxes step
across width. If step_w[i] == 0.0, the prior boxes step
across width of the inputs[i] will be automatically calculated.
step_h(list
, optional, default=
None): Prior boxes step
step_h(list
|tuple|
None): Prior boxes step
across height, If step_h[i] == 0.0, the prior boxes
step across height of the inputs[i] will be automatically calculated.
offset(float, optional, default=0.5): Prior boxes center offset.
variance(list
, optional, default=
[0.1, 0.1, 0.1, 0.1]): the variances
variance(list
|tuple|
[0.1, 0.1, 0.1, 0.1]): the variances
to be encoded in prior boxes.
flip(bool
, optional, default=
False): Whether to flip
flip(bool
|
False): Whether to flip
aspect ratios.
clip(bool, optional, default=False): Whether to clip
out-of-boundary boxes.
min_sizes(list
, optional, default=
None): If `len(inputs) <=2`,
min_sizes(list
|tuple|
None): If `len(inputs) <=2`,
min_sizes must be set up, and the length of min_sizes
should equal to the length of inputs.
max_sizes(list
, optional, default=
None): If `len(inputs) <=2`,
max_sizes(list
|tuple|
None): If `len(inputs) <=2`,
max_sizes must be set up, and the length of min_sizes
should equal to the length of inputs.
name(str
, optional,
None): Name of the prior box layer.
name(str
|
None): Name of the prior box layer.
Returns:
boxes(Variable): the output prior boxes of PriorBox.
...
...
@@ -252,7 +252,16 @@ def prior_box(inputs,
out
=
ops
.
reshape
(
x
=
input
,
shape
=
new_shape
)
return
out
assert
isinstance
(
inputs
,
list
),
'inputs should be a list.'
def
_is_list_or_tuple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
def
_is_list_or_tuple_and_equal
(
data
,
length
,
err_info
):
if
not
(
_is_list_or_tuple_
(
data
)
and
len
(
data
)
==
length
):
raise
ValueError
(
err_info
)
if
not
_is_list_or_tuple_
(
inputs
):
raise
ValueError
(
'inputs should be a list or tuple.'
)
num_layer
=
len
(
inputs
)
if
num_layer
<=
2
:
...
...
@@ -269,26 +278,25 @@ def prior_box(inputs,
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
aspect_ratios
:
if
not
(
isinstance
(
aspect_ratios
,
list
)
and
len
(
aspect_ratios
)
==
num_layer
):
raise
ValueError
(
'aspect_ratios should be list and the length of inputs '
'and aspect_ratios should be the same.'
)
_is_list_or_tuple_and_equal
(
aspect_ratios
,
num_layer
,
'aspect_ratios should be list and the length of inputs '
'and aspect_ratios should be the same.'
)
if
step_h
:
if
not
(
isinstance
(
step_h
,
list
)
and
len
(
step_h
)
==
num_layer
):
raise
ValueError
(
'step_h should be list and the length of inputs and '
'step_h should be the same.'
)
_is_list_or_tuple_and_equal
(
step_h
,
num_layer
,
'step_h should be list and the length of inputs and '
'step_h should be the same.'
)
if
step_w
:
if
not
(
isinstance
(
step_w
,
list
)
and
len
(
step_w
)
==
num_layer
):
raise
ValueError
(
'step_w should be list and the length of inputs and '
'step_w should be the same.'
)
_is_list_or_tuple_and_equal
(
step_w
,
num_layer
,
'step_w should be list and the length of inputs and '
'step_w should be the same.'
)
if
steps
:
if
not
(
isinstance
(
steps
,
list
)
and
len
(
steps
)
==
num_layer
):
raise
ValueError
(
'steps should be list and the length of inputs and '
'step_w should be the same.'
)
_is_list_or_tuple_and_equal
(
steps
,
num_layer
,
'steps should be list and the length of inputs and '
'step_w should be the same.'
)
step_w
=
steps
step_h
=
steps
...
...
@@ -298,13 +306,13 @@ def prior_box(inputs,
min_size
=
min_sizes
[
i
]
max_size
=
max_sizes
[
i
]
aspect_ratio
=
[]
if
not
isinstance
(
min_size
,
list
):
if
not
_is_list_or_tuple_
(
min_size
):
min_size
=
[
min_size
]
if
not
isinstance
(
max_size
,
list
):
if
not
_is_list_or_tuple_
(
max_size
):
max_size
=
[
max_size
]
if
aspect_ratios
:
aspect_ratio
=
aspect_ratios
[
i
]
if
not
isinstance
(
aspect_ratio
,
list
):
if
not
_is_list_or_tuple_
(
aspect_ratio
):
aspect_ratio
=
[
aspect_ratio
]
box
,
var
=
_prior_box_
(
input
,
image
,
min_size
,
max_size
,
aspect_ratio
,
...
...
@@ -354,26 +362,26 @@ def multi_box_head(inputs,
MultiBox Detector)<https://arxiv.org/abs/1512.02325>`_ .
Args:
inputs(list): The list of input Variables, the format
inputs(list
|tuple
): The list of input Variables, the format
of all Variables is NCHW.
num_classes(int): The number of c
als
s.
min_sizes(list
, optional, default=None): The length
of
min_size
is used to compute the the number of prior
box.
num_classes(int): The number of c
lasse
s.
min_sizes(list
|tuple|None): The number
of
min_size
s is used to compute the number of predicted
box.
If the min_size is None, it will be computed according
to min_ratio and max_ratio.
max_sizes(list
, optional, default=None): The length of max_size
is used to compute the the number of pr
ior
box.
min_ratio(int
): If the min_sizes is None, min_ratio and min
_ratio
max_sizes(list
|tuple|None): The number of max_sizes
is used to compute the the number of pr
edicted
box.
min_ratio(int
|None): If the min_sizes is None, min_ratio and max
_ratio
will be used to compute the min_sizes and max_sizes.
max_ratio(int
): If the min_sizes is None, min
_ratio and min_ratio
max_ratio(int
|None): If the min_sizes is None, max
_ratio and min_ratio
will be used to compute the min_sizes and max_sizes.
aspect_ratios(list): The number of the aspect ratios is used to
aspect_ratios(list
|tuple
): The number of the aspect ratios is used to
compute the number of prior box.
base_size(int): the base_size is used to get min_size
and max_size according to min_ratio and max_ratio.
flip(bool
, optional, default=
False): Whether to flip
flip(bool
|
False): Whether to flip
aspect ratios.
name(str
, optional,
None): Name of the prior box layer.
name(str
|
None): Name of the prior box layer.
Returns:
...
...
@@ -397,52 +405,33 @@ def multi_box_head(inputs,
flip=True)
"""
def
_conv_with_bn_
(
input
,
conv_num_filter
,
conv_padding
=
1
,
conv_filter_size
=
3
,
conv_stride
=
1
,
conv_act
=
None
,
param_attr
=
None
,
conv_with_batchnorm
=
False
,
conv_batchnorm_drop_rate
=
0.0
,
use_cudnn
=
True
):
conv2d
=
nn
.
conv2d
(
input
=
input
,
num_filters
=
conv_num_filter
,
filter_size
=
conv_filter_size
,
padding
=
conv_padding
,
stride
=
conv_stride
,
param_attr
=
param_attr
,
act
=
conv_act
,
use_cudnn
=
use_cudnn
)
if
conv_with_batchnorm
:
conv2d
=
nn
.
batch_norm
(
input
=
conv2d
)
drop_rate
=
conv_batchnorm_drop_rate
if
abs
(
drop_rate
)
>
1e-5
:
conv2d
=
nn
.
dropout
(
x
=
conv2d
,
dropout_prob
=
drop_rate
)
def
_is_equal_
(
len1
,
len2
,
err_info
):
if
not
(
len1
==
len2
):
raise
ValueError
(
err_info
)
return
conv2d
def
_is_list_or_tuple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
if
not
(
isinstance
(
inputs
,
list
)
):
raise
ValueError
(
'inputs should be a list.'
)
if
not
_is_list_or_tuple_
(
inputs
):
raise
ValueError
(
'inputs should be a list
or tuple
.'
)
if
min_sizes
is
not
None
:
if
not
(
len
(
inputs
)
==
len
(
min_sizes
)):
raise
ValueError
(
'the length of min_sizes '
'and inputs should be the same.'
)
_is_equal_
(
len
(
inputs
),
len
(
min_sizes
),
'the length of min_sizes '
'and inputs should be equal.'
)
if
max_sizes
is
not
None
:
if
not
(
len
(
inputs
)
==
len
(
max_sizes
)):
raise
ValueError
(
'the length of max_sizes '
'and inputs should be the same.'
)
_is_equal_
(
len
(
inputs
),
len
(
max_sizes
),
'the length of max_sizes '
'and inputs should be equal.'
)
if
aspect_ratios
is
not
None
:
if
not
(
len
(
inputs
)
==
len
(
aspect_ratios
)):
raise
ValueError
(
'the length of aspect_ratios '
'and inputs should be the same.'
)
_is_equal_
(
len
(
inputs
),
len
(
aspect_ratios
),
'the length of aspect_ratios '
'and inputs should be equal.'
)
if
min_sizes
is
None
:
# If min_sizes is None, min_sizes and max_sizes
...
...
@@ -464,22 +453,23 @@ def multi_box_head(inputs,
mbox_confs
=
[]
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
min_sizes
[
i
]
if
type
(
min_size
)
is
not
list
:
if
not
_is_list_or_tuple_
(
min_size
)
:
min_size
=
[
min_size
]
max_size
=
[]
if
max_sizes
is
not
None
:
max_size
=
max_sizes
[
i
]
if
type
(
max_size
)
is
not
list
:
if
not
_is_list_or_tuple_
(
max_size
)
:
max_size
=
[
max_size
]
if
not
(
len
(
max_size
)
==
len
(
min_size
)):
raise
ValueError
(
'max_size and min_size should have same length.'
)
_is_equal_
(
len
(
max_size
),
len
(
min_size
),
'the length of max_size and min_size should be equal.'
)
aspect_ratio
=
[]
if
aspect_ratios
is
not
None
:
aspect_ratio
=
aspect_ratios
[
i
]
if
type
(
aspect_ratio
)
is
not
list
:
if
not
_is_list_or_tuple_
(
aspect_ratio
)
:
aspect_ratio
=
[
aspect_ratio
]
# get the number of prior box on each location
...
...
@@ -499,25 +489,24 @@ def multi_box_head(inputs,
if
share_location
:
num_loc_output
*=
num_classes
mbox_loc
=
_conv_with_bn_
(
mbox_loc
=
nn
.
conv2d
(
input
=
input
,
conv_num_filter
=
num_loc_output
,
conv_padding
=
pad
,
conv_stride
=
stride
,
conv_filter_size
=
kernel_size
,
conv_with_batchnorm
=
use_batchnorm
)
num_filters
=
num_loc_output
,
filter_size
=
kernel_size
,
padding
=
pad
,
stride
=
stride
)
mbox_loc
=
nn
.
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_locs
.
append
(
mbox_loc
)
# get conf_loc
num_conf_output
=
num_priors_per_location
*
num_classes
conf_loc
=
_conv_with_bn_
(
conf_loc
=
nn
.
conv2d
(
input
=
input
,
conv_num_filter
=
num_conf_output
,
conv_padding
=
pad
,
conv_stride
=
stride
,
conv_filter_size
=
kernel_size
,
conv_with_batchnorm
=
use_batchnorm
)
num_filters
=
num_conf_output
,
filter_size
=
kernel_size
,
padding
=
pad
,
stride
=
stride
)
conf_loc
=
nn
.
transpose
(
conf_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_confs
.
append
(
conf_loc
)
...
...
python/paddle/v2/fluid/nets.py
浏览文件 @
84d9c690
...
...
@@ -18,7 +18,6 @@ __all__ = [
"sequence_conv_pool"
,
"glu"
,
"scaled_dot_product_attention"
,
"img_conv_with_bn"
,
]
...
...
@@ -108,38 +107,6 @@ def img_conv_group(input,
return
pool_out
def
img_conv_with_bn
(
input
,
conv_num_filter
,
conv_padding
=
1
,
conv_filter_size
=
3
,
conv_stride
=
1
,
conv_act
=
None
,
param_attr
=
None
,
conv_with_batchnorm
=
False
,
conv_batchnorm_drop_rate
=
0.0
,
use_cudnn
=
True
):
"""
Image Convolution Group, Used for vgg net.
"""
conv2d
=
layers
.
conv2d
(
input
=
input
,
num_filters
=
conv_num_filter
,
filter_size
=
conv_filter_size
,
padding
=
conv_padding
,
stride
=
conv_stride
,
param_attr
=
param_attr
,
act
=
conv_act
,
use_cudnn
=
use_cudnn
)
if
conv_with_batchnorm
:
conv2d
=
layers
.
batch_norm
(
input
=
conv2d
)
drop_rate
=
conv_batchnorm_drop_rate
if
abs
(
drop_rate
)
>
1e-5
:
conv2d
=
layers
.
dropout
(
x
=
conv2d
,
dropout_prob
=
drop_rate
)
return
conv2d
def
sequence_conv_pool
(
input
,
num_filters
,
filter_size
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录