Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
844d0620
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
844d0620
编写于
2月 15, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove NAG optimizer
上级
8e0d1d8b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
10 addition
and
91 deletion
+10
-91
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+6
-21
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+4
-70
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
844d0620
from
paddle.trainer_config_helpers
import
*
from
paddle.trainer.PyDataProvider2
import
dense_vector
,
integer_value
import
paddle.v2
as
paddle
_v2
import
paddle.v2
as
paddle
import
numpy
import
mnist_util
...
...
@@ -24,7 +24,7 @@ def network_config():
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
_v2
.
trainer
.
CompleteTrainOneBatch
):
if
isinstance
(
event
,
paddle
.
trainer
.
CompleteTrainOneBatch
):
print
"Pass %d, Batch %d, Cost %f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
)
else
:
...
...
@@ -32,31 +32,16 @@ def event_handler(event):
def
main
():
paddle
_v2
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
model_config
=
parse_network_config
(
network_config
)
pool
=
paddle
_v2
.
parameters
.
create
(
model_config
)
pool
=
paddle
.
parameters
.
create
(
model_config
)
for
param_name
in
pool
.
get_names
():
array
=
pool
.
get_parameter
(
param_name
)
array
[:]
=
numpy
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
array
.
shape
)
def
nag
(
v
,
g
,
vel_t_1
):
"""
NAG Optimizer. A optimizer which Paddle CPP is not implemented.
https://arxiv.org/pdf/1212.0901v2.pdf eq.6 eq.7
:param v: parameter value
:param g: parameter gradient
:param vel_t_1: t-1 velocity
:return:
"""
mu
=
0.09
e
=
0.00001
adam_optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-3
)
vel_t
=
mu
*
vel_t_1
-
e
*
g
v
[:]
=
v
+
(
mu
**
2
)
*
vel_t
-
(
1
+
mu
)
*
e
*
g
vel_t_1
[:]
=
vel_t
trainer
=
paddle_v2
.
trainer
.
SGDTrainer
(
update_equation
=
nag
)
trainer
=
paddle
.
trainer
.
SGDTrainer
(
update_equation
=
adam_optimizer
)
trainer
.
train
(
train_data_reader
=
train_reader
,
topology
=
model_config
,
...
...
python/paddle/v2/trainer.py
浏览文件 @
844d0620
...
...
@@ -2,7 +2,7 @@ import collections
from
paddle.proto.ModelConfig_pb2
import
ModelConfig
from
paddle.proto.ParameterConfig_pb2
import
ParameterConfig
from
.
import
parameters
as
v2_parameters
import
numpy
from
.
import
optimizer
as
v2_optimizer
import
py_paddle.swig_paddle
as
api
from
py_paddle
import
DataProviderConverter
...
...
@@ -93,72 +93,6 @@ class LazyParameterPool(v2_parameters.IParameterPool):
self
.
arrays
=
dict
()
class
CustomizeUpdateEquation
(
object
):
def
__init__
(
self
,
callback
):
self
.
__callback__
=
callback
if
self
.
__callback__
.
func_code
.
co_argcount
<
2
:
raise
ValueError
(
"The update equation at least should contain 2 arguments, "
"first is value, second is gradient"
)
self
.
local_params_count
=
self
.
__callback__
.
func_code
.
co_argcount
-
2
self
.
local_params
=
dict
()
def
enable_types
(
self
):
return
[
api
.
PARAMETER_VALUE
,
api
.
PARAMETER_GRADIENT
]
def
init
(
self
,
gradient_machine
):
assert
isinstance
(
gradient_machine
,
api
.
GradientMachine
)
for
param
in
gradient_machine
.
getParameters
():
conf
=
param
.
getConfig
().
toProto
()
shape
=
map
(
int
,
conf
.
dims
)
self
.
local_params
[
conf
.
name
]
=
[]
for
_
in
xrange
(
self
.
local_params_count
):
self
.
local_params
[
conf
.
name
].
append
(
numpy
.
zeros
(
shape
=
shape
,
dtype
=
'float32'
))
def
create_local_updater
(
self
):
return
self
def
startPass
(
self
):
pass
def
finishPass
(
self
):
pass
def
startBatch
(
self
,
batch_size
):
return
api
.
PASS_TRAIN
def
finishBatch
(
self
,
cost
):
pass
def
update
(
self
,
param
):
conf
=
param
.
getConfig
().
toProto
()
shape
=
map
(
int
,
conf
.
dims
)
if
not
api
.
isUsingGpu
():
v
=
param
.
getBuf
(
api
.
PARAMETER_VALUE
).
toNumpyArrayInplace
().
reshape
(
shape
)
g
=
param
.
getBuf
(
api
.
PARAMETER_GRADIENT
).
toNumpyArrayInplace
(
).
reshape
(
shape
)
else
:
v
=
param
.
getBuf
(
api
.
PARAMETER_VALUE
).
copyToNumpyArray
().
reshape
(
shape
)
g
=
param
.
getBuf
(
api
.
PARAMETER_GRADIENT
).
copyToNumpyArray
().
reshape
(
shape
)
args
=
[
v
,
g
]
for
arg
in
self
.
local_params
[
conf
.
name
]:
args
.
append
(
arg
)
self
.
__callback__
(
*
args
)
if
api
.
isUsingGpu
():
param
.
getBuf
(
api
.
PARAMETER_VALUE
).
copyFromNumpyArray
(
v
.
flatten
(
).
astype
(
'float32'
))
# discard gradient changed.
class
SGDTrainer
(
ITrainer
):
def
__init__
(
self
,
update_equation
):
"""
...
...
@@ -166,9 +100,9 @@ class SGDTrainer(ITrainer):
:param update_equation: Maybe we should give a DSL for update equation?
"""
if
callable
(
update_equation
):
update_equation
=
CustomizeUpdateEquation
(
update_equation
)
if
not
isinstance
(
update_equation
,
v2_optimizer
.
Optimizer
):
raise
ValueError
(
"update equation parameter must be "
"paddle.v2.optimizer.Optimizer"
)
self
.
__optimizer__
=
update_equation
def
train
(
self
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录