Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
842b485f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
842b485f
编写于
12月 13, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enhance ReduceOp to support reducing over all elements
上级
0a8addf8
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
113 addition
and
52 deletion
+113
-52
paddle/operators/reduce_op.cc
paddle/operators/reduce_op.cc
+21
-11
paddle/operators/reduce_op.h
paddle/operators/reduce_op.h
+78
-41
python/paddle/v2/fluid/tests/test_reduce_op.py
python/paddle/v2/fluid/tests/test_reduce_op.py
+14
-0
未找到文件。
paddle/operators/reduce_op.cc
浏览文件 @
842b485f
...
@@ -37,18 +37,23 @@ class ReduceOp : public framework::OperatorWithKernel {
...
@@ -37,18 +37,23 @@ class ReduceOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_LT
(
PADDLE_ENFORCE_LT
(
dim
,
x_rank
,
dim
,
x_rank
,
"The dim should be in the range [-rank(input), rank(input))."
);
"The dim should be in the range [-rank(input), rank(input))."
);
bool
keep_dim
=
ctx
->
Attrs
().
Get
<
bool
>
(
"keep_dim"
);
bool
reduce_all
=
ctx
->
Attrs
().
Get
<
bool
>
(
"reduce_all"
);
auto
dims_vector
=
vectorize
(
x_dims
);
if
(
reduce_all
)
{
if
(
keep_dim
||
x_rank
==
1
)
{
ctx
->
SetOutputDim
(
"Out"
,
{
1
});
dims_vector
[
dim
]
=
1
;
}
else
{
}
else
{
dims_vector
.
erase
(
dims_vector
.
begin
()
+
dim
);
bool
keep_dim
=
ctx
->
Attrs
().
Get
<
bool
>
(
"keep_dim"
);
}
auto
dims_vector
=
vectorize
(
x_dims
);
auto
out_dims
=
framework
::
make_ddim
(
dims_vector
);
if
(
keep_dim
||
x_rank
==
1
)
{
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
dims_vector
[
dim
]
=
1
;
if
(
dim
!=
0
)
{
}
else
{
// Only pass LoD when not reducing on the first dim.
dims_vector
.
erase
(
dims_vector
.
begin
()
+
dim
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
auto
out_dims
=
framework
::
make_ddim
(
dims_vector
);
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
dim
!=
0
)
{
// Only pass LoD when not reducing on the first dim.
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
}
}
}
};
};
...
@@ -95,11 +100,16 @@ class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -95,11 +100,16 @@ class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default false) "
"(bool, default false) "
"If true, retain the reduced dimension with length 1."
)
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"reduce_all"
,
"(bool, default false) "
"If true, output a scalar reduced along all dimensions."
)
.
SetDefault
(
false
);
comment_
=
R"DOC(
comment_
=
R"DOC(
{ReduceOp} Operator.
{ReduceOp} Operator.
This operator computes the {reduce} of input tensor along the given dimension.
This operator computes the {reduce} of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
)DOC"
;
)DOC"
;
AddComment
(
comment_
);
AddComment
(
comment_
);
...
...
paddle/operators/reduce_op.h
浏览文件 @
842b485f
...
@@ -26,10 +26,12 @@ using DDim = framework::DDim;
...
@@ -26,10 +26,12 @@ using DDim = framework::DDim;
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenScalar
=
framework
::
EigenScalar
<
T
,
MajorType
,
IndexType
>
;
using
EigenScalar
=
framework
::
EigenScalar
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
struct
SumFunctor
{
struct
SumFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
Dim
>
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
Dim
>
...
@@ -95,26 +97,41 @@ template <typename DeviceContext, typename T, typename Functor>
...
@@ -95,26 +97,41 @@ template <typename DeviceContext, typename T, typename Functor>
class
ReduceKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ReduceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
int
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
switch
(
rank
)
{
if
(
reduce_all
)
{
case
1
:
// Flatten and reduce 1-D tensor
ReduceCompute
<
1
>
(
context
);
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
break
;
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
case
2
:
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
ReduceCompute
<
2
>
(
context
);
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
input
);
break
;
auto
out
=
EigenScalar
<
T
>::
From
(
*
output
);
case
3
:
auto
&
place
=
ReduceCompute
<
3
>
(
context
);
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
break
;
auto
reduce_dim
=
Eigen
::
array
<
int
,
1
>
({{
0
}});
case
4
:
Functor
functor
;
ReduceCompute
<
4
>
(
context
);
functor
(
place
,
x
,
out
,
reduce_dim
);
break
;
}
else
{
case
5
:
int
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
ReduceCompute
<
5
>
(
context
);
switch
(
rank
)
{
break
;
case
1
:
case
6
:
ReduceCompute
<
1
>
(
context
);
ReduceCompute
<
6
>
(
context
);
break
;
break
;
case
2
:
ReduceCompute
<
2
>
(
context
);
break
;
case
3
:
ReduceCompute
<
3
>
(
context
);
break
;
case
4
:
ReduceCompute
<
4
>
(
context
);
break
;
case
5
:
ReduceCompute
<
5
>
(
context
);
break
;
case
6
:
ReduceCompute
<
6
>
(
context
);
break
;
}
}
}
}
}
...
@@ -157,26 +174,46 @@ template <typename DeviceContext, typename T, typename Functor>
...
@@ -157,26 +174,46 @@ template <typename DeviceContext, typename T, typename Functor>
class
ReduceGradKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ReduceGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
int
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
switch
(
rank
)
{
if
(
reduce_all
)
{
case
1
:
auto
*
input0
=
context
.
Input
<
Tensor
>
(
"X"
);
ReduceGradCompute
<
1
>
(
context
);
auto
*
input1
=
context
.
Input
<
Tensor
>
(
"Out"
);
break
;
auto
*
input2
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
case
2
:
auto
*
output
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
ReduceGradCompute
<
2
>
(
context
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
break
;
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
input0
);
case
3
:
auto
x_reduce
=
EigenVector
<
T
>::
From
(
*
input1
);
ReduceGradCompute
<
3
>
(
context
);
auto
x_reduce_grad
=
EigenVector
<
T
>::
From
(
*
input2
);
break
;
auto
x_grad
=
EigenVector
<
T
>::
Flatten
(
*
output
);
case
4
:
auto
&
place
=
ReduceGradCompute
<
4
>
(
context
);
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
break
;
auto
broadcast_dim
=
case
5
:
Eigen
::
array
<
int
,
1
>
({{
static_cast
<
int
>
(
input0
->
numel
())}});
ReduceGradCompute
<
5
>
(
context
);
Functor
functor
;
break
;
functor
(
place
,
x
,
x_reduce
,
x_grad
,
x_reduce_grad
,
broadcast_dim
,
case
6
:
broadcast_dim
[
0
]);
ReduceGradCompute
<
6
>
(
context
);
}
else
{
break
;
int
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
ReduceGradCompute
<
1
>
(
context
);
break
;
case
2
:
ReduceGradCompute
<
2
>
(
context
);
break
;
case
3
:
ReduceGradCompute
<
3
>
(
context
);
break
;
case
4
:
ReduceGradCompute
<
4
>
(
context
);
break
;
case
5
:
ReduceGradCompute
<
5
>
(
context
);
break
;
case
6
:
ReduceGradCompute
<
6
>
(
context
);
break
;
}
}
}
}
}
...
...
python/paddle/v2/fluid/tests/test_reduce_op.py
浏览文件 @
842b485f
...
@@ -85,5 +85,19 @@ class Test1DReduce(OpTest):
...
@@ -85,5 +85,19 @@ class Test1DReduce(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
class
TestReduceAll
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
2
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'reduce_all'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
()}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录