Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8266546e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
8266546e
编写于
6月 20, 2017
作者:
Q
qingqing01
提交者:
GitHub
6月 20, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2480 from emailweixu/repeat_layer
Repeat layer for column vector
上级
09f34c4b
f4853510
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
196 addition
and
112 deletion
+196
-112
paddle/gserver/layers/FeatureMapExpandLayer.cpp
paddle/gserver/layers/FeatureMapExpandLayer.cpp
+54
-24
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+9
-6
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+19
-44
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+30
-7
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
.../paddle/trainer_config_helpers/tests/configs/file_list.sh
+1
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/last_first_seq.protostr
...ig_helpers/tests/configs/protostr/last_first_seq.protostr
+6
-6
python/paddle/trainer_config_helpers/tests/configs/protostr/shared_gru.protostr
...config_helpers/tests/configs/protostr/shared_gru.protostr
+2
-2
python/paddle/trainer_config_helpers/tests/configs/protostr/shared_lstm.protostr
...onfig_helpers/tests/configs/protostr/shared_lstm.protostr
+2
-2
python/paddle/trainer_config_helpers/tests/configs/protostr/simple_rnn_layers.protostr
...helpers/tests/configs/protostr/simple_rnn_layers.protostr
+6
-6
python/paddle/trainer_config_helpers/tests/configs/protostr/test_repeat_layer.protostr
...helpers/tests/configs/protostr/test_repeat_layer.protostr
+42
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_rnn_group.protostr
...ig_helpers/tests/configs/protostr/test_rnn_group.protostr
+6
-6
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_concat_reshape.protostr
...s/tests/configs/protostr/test_seq_concat_reshape.protostr
+1
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/test_sequence_pooling.protostr
...ers/tests/configs/protostr/test_sequence_pooling.protostr
+7
-7
python/paddle/trainer_config_helpers/tests/configs/test_repeat_layer.py
...trainer_config_helpers/tests/configs/test_repeat_layer.py
+11
-0
未找到文件。
paddle/gserver/layers/FeatureMapExpandLayer.cpp
浏览文件 @
8266546e
...
...
@@ -40,6 +40,7 @@ namespace paddle {
class
FeatureMapExpandLayer
:
public
Layer
{
private:
int
numFilters_
;
bool
asRowVector_
;
public:
explicit
FeatureMapExpandLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
...
...
@@ -62,6 +63,7 @@ bool FeatureMapExpandLayer::init(const LayerMap& layerMap,
CHECK_EQ
(
inputLayers_
.
size
(),
1UL
);
numFilters_
=
config_
.
num_filters
();
asRowVector_
=
config_
.
user_arg
()
!=
"as_col_vec"
;
return
true
;
}
...
...
@@ -76,16 +78,30 @@ void FeatureMapExpandLayer::forward(PassType passType) {
{
AsyncGpuBlock
asyncGpuBlock
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outVTmp
=
Matrix
::
create
(
outputV
->
getData
()
+
i
*
imgSize
*
numFilters_
,
numFilters_
,
imgSize
,
false
,
useGpu_
);
MatrixPtr
inVTmp
=
Matrix
::
create
(
inputV
->
getData
()
+
i
*
imgSize
,
1
,
imgSize
,
false
,
useGpu_
);
outVTmp
->
addRowVector
(
*
inVTmp
);
if
(
asRowVector_
)
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outVTmp
=
Matrix
::
create
(
outputV
->
getData
()
+
i
*
imgSize
*
numFilters_
,
numFilters_
,
imgSize
,
false
,
useGpu_
);
MatrixPtr
inVTmp
=
Matrix
::
create
(
inputV
->
getData
()
+
i
*
imgSize
,
1
,
imgSize
,
false
,
useGpu_
);
outVTmp
->
addRowVector
(
*
inVTmp
);
}
}
else
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outVTmp
=
Matrix
::
create
(
outputV
->
getData
()
+
i
*
imgSize
*
numFilters_
,
imgSize
,
numFilters_
,
false
,
useGpu_
);
MatrixPtr
inVTmp
=
Matrix
::
create
(
inputV
->
getData
()
+
i
*
imgSize
,
imgSize
,
1
,
false
,
useGpu_
);
outVTmp
->
addColVector
(
*
inVTmp
);
}
}
}
/* activation */
{
...
...
@@ -102,24 +118,38 @@ void FeatureMapExpandLayer::backward(const UpdateCallback& callback) {
MatrixPtr
outGrad
=
getOutputGrad
();
size_t
batchSize
=
getInput
(
0
).
getBatchSize
();
int
imgSize
=
inGrad
->
getWidth
();
/* Do activation */
{
REGISTER_TIMER_INFO
(
"BpAvtTimer"
,
getName
().
c_str
());
backwardActivation
();
}
{
AsyncGpuBlock
asyncGpuBlock
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outGradTmp
=
Matrix
::
create
(
outGrad
->
getData
()
+
i
*
imgSize
*
numFilters_
,
numFilters_
,
imgSize
,
false
,
useGpu_
);
MatrixPtr
inGradTmp
=
Matrix
::
create
(
inGrad
->
getData
()
+
i
*
imgSize
,
1
,
imgSize
,
false
,
useGpu_
);
inGradTmp
->
collectBias
(
*
outGradTmp
,
1
);
if
(
asRowVector_
)
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outGradTmp
=
Matrix
::
create
(
outGrad
->
getData
()
+
i
*
imgSize
*
numFilters_
,
numFilters_
,
imgSize
,
false
,
useGpu_
);
MatrixPtr
inGradTmp
=
Matrix
::
create
(
inGrad
->
getData
()
+
i
*
imgSize
,
1
,
imgSize
,
false
,
useGpu_
);
inGradTmp
->
collectBias
(
*
outGradTmp
,
1
);
}
}
else
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outGradTmp
=
Matrix
::
create
(
outGrad
->
getData
()
+
i
*
imgSize
*
numFilters_
,
imgSize
,
numFilters_
,
false
,
useGpu_
);
MatrixPtr
inGradTmp
=
Matrix
::
create
(
inGrad
->
getData
()
+
i
*
imgSize
,
imgSize
,
1
,
false
,
useGpu_
);
inGradTmp
->
sumRows
(
*
outGradTmp
,
1
,
1
);
}
}
}
/* Do derivation */
{
REGISTER_TIMER_INFO
(
"BpAvtTimer"
,
getName
().
c_str
());
backwardActivation
();
}
}
}
// namespace paddle.
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
8266546e
...
...
@@ -1598,12 +1598,15 @@ TEST(Layer, FeatureMapExpandLayer) {
/* paraSize= */
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"featmap_expand"
,
/*batch_size*/
100
,
/* trans= */
false
,
useGpu
,
/* useWeight */
true
);
for
(
auto
asRowVec
:
{
false
,
true
})
{
config
.
layerConfig
.
set_user_arg
(
asRowVec
?
"as_row_vec"
:
"as_col_vec"
);
testLayerGrad
(
config
,
"featmap_expand"
,
/*batch_size*/
100
,
/* trans= */
false
,
useGpu
,
/* useWeight */
true
);
}
}
}
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
8266546e
...
...
@@ -1926,7 +1926,6 @@ class BatchNormLayer(LayerBase):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
"linear"
,
bias
=
True
,
use_global_stats
=
True
,
moving_average_fraction
=
0.9
,
...
...
@@ -1964,12 +1963,7 @@ class BatchNormLayer(LayerBase):
cudnn_version
>=
4007
self
.
layer_type
=
"cudnn_batch_norm"
if
use_cudnn
else
"batch_norm"
super
(
BatchNormLayer
,
self
).
__init__
(
name
,
self
.
layer_type
,
0
,
active_type
=
active_type
,
inputs
=
inputs
,
**
xargs
)
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
if
use_global_stats
is
not
None
:
self
.
config
.
use_global_stats
=
use_global_stats
...
...
@@ -2377,15 +2371,23 @@ class ExpandLayer(LayerBase):
@
config_layer
(
'featmap_expand'
)
class
FeatMapExpandLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
num_filters
=
None
,
bias
=
False
):
def
__init__
(
self
,
name
,
inputs
,
num_filters
=
None
,
as_row_vector
=
True
,
bias
=
False
,
**
xargs
):
super
(
FeatMapExpandLayer
,
self
).
__init__
(
name
,
'featmap_expand'
,
0
,
inputs
=
inputs
,
device
=
device
)
name
,
'featmap_expand'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'ExpandLayer takes 1 and only 1 inputs'
)
if
num_filters
is
not
None
:
self
.
config
.
num_filters
=
num_filters
else
:
logger
.
fatal
(
"FeatMapExpandLayer must specify num_filters."
)
if
not
as_row_vector
:
self
.
config
.
user_arg
=
"as_col_vec"
self
.
set_layer_size
(
self
.
get_input_layer
(
0
).
size
*
num_filters
)
...
...
@@ -2395,14 +2397,12 @@ class MaxLayer(LayerBase):
name
,
inputs
,
trans_type
=
'non-seq'
,
active_type
=
'linear'
,
bias
=
False
,
output_max_index
=
None
,
**
xargs
):
super
(
MaxLayer
,
self
).
__init__
(
name
,
'max'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'MaxLayer must have 1 input'
)
self
.
config
.
trans_type
=
trans_type
self
.
config
.
active_type
=
active_type
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
self
.
set_layer_size
(
input_layer
.
size
)
...
...
@@ -2444,18 +2444,12 @@ class SequenceLastInstanceLayer(LayerBase):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
trans_type
=
'non-seq'
,
bias
=
False
,
stride
=-
1
,
**
xargs
):
super
(
SequenceLastInstanceLayer
,
self
).
__init__
(
name
,
'seqlastins'
,
0
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
name
,
'seqlastins'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
inputs
)
==
1
,
'SequenceLastInstanceLayer must have 1 input'
)
if
trans_type
==
'seq'
:
...
...
@@ -2471,7 +2465,6 @@ class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
trans_type
=
'non-seq'
,
bias
=
False
,
stride
=-
1
,
...
...
@@ -2479,7 +2472,6 @@ class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
super
(
SequenceFirstInstanceLayer
,
self
).
__init__
(
name
,
inputs
=
inputs
,
active_type
=
active_type
,
trans_type
=
trans_type
,
bias
=
bias
,
stride
=
stride
,
...
...
@@ -2489,14 +2481,9 @@ class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
@
config_layer
(
'seqconcat'
)
class
SequenceConcatLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
bias
=
False
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
bias
=
False
,
**
xargs
):
super
(
SequenceConcatLayer
,
self
).
__init__
(
name
,
'seqconcat'
,
0
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
name
,
'seqconcat'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
inputs
)
==
2
,
'SequenceConcatLayer must have 2 inputs'
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
...
...
@@ -2507,20 +2494,9 @@ class SequenceConcatLayer(LayerBase):
@
config_layer
(
'seqreshape'
)
class
SequenceReshapeLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
active_type
=
'linear'
,
bias
=
False
,
**
xargs
):
def
__init__
(
self
,
name
,
size
,
inputs
,
bias
=
False
,
**
xargs
):
super
(
SequenceReshapeLayer
,
self
).
__init__
(
name
,
'seqreshape'
,
size
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
name
,
'seqreshape'
,
size
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
inputs
)
==
1
,
'SequenceReshapeLayer must have 1 inputs'
)
self
.
set_layer_size
(
size
)
...
...
@@ -2529,9 +2505,9 @@ class SequenceReshapeLayer(LayerBase):
@
config_layer
(
'subseq'
)
class
SubSequenceLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
active_type
=
'linear'
,
bias
=
False
,
**
xargs
):
def
__init__
(
self
,
name
,
inputs
,
bias
=
False
,
**
xargs
):
super
(
SubSequenceLayer
,
self
).
__init__
(
name
,
'subseq'
,
0
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
name
,
'subseq'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
inputs
)
==
3
,
'SubSequenceLayer must have 3 inputs'
)
input_layer0
=
self
.
get_input_layer
(
0
)
size
=
input_layer0
.
size
...
...
@@ -2687,11 +2663,10 @@ class AverageLayer(LayerBase):
inputs
,
average_strategy
=
'average'
,
trans_type
=
'non-seq'
,
active_type
=
'linear'
,
bias
=
False
,
**
xargs
):
super
(
AverageLayer
,
self
).
__init__
(
name
,
'average'
,
0
,
inputs
=
inputs
,
active_type
=
active_type
,
**
xargs
)
name
,
'average'
,
0
,
inputs
=
inputs
,
**
xargs
)
self
.
config
.
average_strategy
=
average_strategy
self
.
config
.
trans_type
=
trans_type
config_assert
(
len
(
inputs
)
==
1
,
'AverageLayer must have 1 input'
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
8266546e
...
...
@@ -1553,14 +1553,24 @@ def expand_layer(input,
@
wrap_name_default
()
@
wrap_act_default
(
act
=
IdentityActivation
())
@
layer_support
()
def
repeat_layer
(
input
,
num_repeats
,
name
=
None
,
layer_attr
=
None
):
def
repeat_layer
(
input
,
num_repeats
,
as_row_vector
=
True
,
act
=
None
,
name
=
None
,
layer_attr
=
None
):
"""
A layer for repeating the input for num_repeats times. This is equivalent
to apply concat_layer() with num_repeats same input.
A layer for repeating the input for num_repeats times.
If as_row_vector:
.. math::
y = [x, x, \cdots, x]
y = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
If not as_row_vector:
.. math::
y = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]
The example usage is:
...
...
@@ -1573,6 +1583,14 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None):
:param num_repeats: Repeat the input so many times
:type num_repeats: int
:param name: Layer name.
:param as_row_vector: True for treating input as row vector and repeating
in the column direction. This is equivalent to apply
concat_layer() with num_repeats same input.
False for treating input as column vector and repeating
in the row direction.
:type as_row_vector: bool
:param act: Activation type.
:type act: BaseActivation
:type name: basestring
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
...
...
@@ -1583,13 +1601,16 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None):
l
=
Layer
(
inputs
=
[
input
.
name
],
name
=
name
,
active_type
=
act
.
name
,
num_filters
=
num_repeats
,
as_row_vector
=
as_row_vector
,
type
=
LayerType
.
FEATURE_MAP_EXPAND_LAYER
,
**
ExtraAttr
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
=
name
,
size
=
l
.
config
.
size
,
layer_type
=
LayerType
.
FEATURE_MAP_EXPAND_LAYER
,
activation
=
act
,
parents
=
[
input
])
...
...
@@ -2834,11 +2855,13 @@ def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
Concat sequence a with sequence b.
Inputs:
- a = [a1, a2, ..., a
n
]
- a = [a1, a2, ..., a
m
]
- b = [b1, b2, ..., bn]
- Note that the length of a and b should be the same.
Output: [a1, b1, a2, b2, ..., an, bn]
Output: [a1, ..., am, b1, ..., bn]
Note that the above computation is for one sample. Multiple samples are
processed in one batch.
The example usage is:
...
...
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
浏览文件 @
8266546e
#!/bin/bash
export
configs
=(
test_fc layer_activations projections test_print_layer
export
configs
=(
test_
repeat_layer test_
fc layer_activations projections test_print_layer
test_sequence_pooling test_lstmemory_layer test_grumemory_layer
last_first_seq test_expand_layer test_ntm_layers test_hsigmoid
img_layers img_trans_layers util_layers simple_rnn_layers unused_layers test_cost_layers
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/last_first_seq.protostr
浏览文件 @
8266546e
...
...
@@ -9,7 +9,7 @@ layers {
name: "__first_seq_0__"
type: "seqlastins"
size: 30
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "data"
}
...
...
@@ -21,7 +21,7 @@ layers {
name: "__first_seq_1__"
type: "seqlastins"
size: 30
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "data"
}
...
...
@@ -33,7 +33,7 @@ layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 30
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "data"
}
...
...
@@ -44,7 +44,7 @@ layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 30
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "data"
}
...
...
@@ -55,7 +55,7 @@ layers {
name: "__first_seq_2__"
type: "seqlastins"
size: 30
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "data"
}
...
...
@@ -67,7 +67,7 @@ layers {
name: "__last_seq_2__"
type: "seqlastins"
size: 30
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "data"
}
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/shared_gru.protostr
浏览文件 @
8266546e
...
...
@@ -123,7 +123,7 @@ layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__simple_gru_0__"
}
...
...
@@ -134,7 +134,7 @@ layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__simple_gru_1__"
}
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/shared_lstm.protostr
浏览文件 @
8266546e
...
...
@@ -205,7 +205,7 @@ layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__lstm_group_0__"
}
...
...
@@ -216,7 +216,7 @@ layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__lstm_group_1__"
}
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/simple_rnn_layers.protostr
浏览文件 @
8266546e
...
...
@@ -138,7 +138,7 @@ layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__recurrent_layer_0__"
}
...
...
@@ -149,7 +149,7 @@ layers {
name: "__first_seq_0__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__recurrent_layer_1__"
}
...
...
@@ -161,7 +161,7 @@ layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__lstmemory_0__"
}
...
...
@@ -172,7 +172,7 @@ layers {
name: "__first_seq_1__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__lstmemory_1__"
}
...
...
@@ -184,7 +184,7 @@ layers {
name: "__last_seq_2__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__gru_0__"
}
...
...
@@ -195,7 +195,7 @@ layers {
name: "__first_seq_2__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__gru_1__"
}
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_repeat_layer.protostr
0 → 100644
浏览文件 @
8266546e
type: "nn"
layers {
name: "data"
type: "data"
size: 30
active_type: ""
}
layers {
name: "__repeat_layer_0__"
type: "featmap_expand"
size: 300
active_type: ""
inputs {
input_layer_name: "data"
}
num_filters: 10
}
layers {
name: "__repeat_layer_1__"
type: "featmap_expand"
size: 300
active_type: "tanh"
inputs {
input_layer_name: "data"
}
num_filters: 10
user_arg: "as_col_vec"
}
input_layer_names: "data"
output_layer_names: "__repeat_layer_0__"
output_layer_names: "__repeat_layer_1__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__repeat_layer_0__"
layer_names: "__repeat_layer_1__"
input_layer_names: "data"
output_layer_names: "__repeat_layer_0__"
output_layer_names: "__repeat_layer_1__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/protostr/test_rnn_group.protostr
浏览文件 @
8266546e
...
...
@@ -91,7 +91,7 @@ layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "rnn_forward"
}
...
...
@@ -140,7 +140,7 @@ layers {
name: "__first_seq_0__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "rnn_back"
}
...
...
@@ -190,7 +190,7 @@ layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "rnn_subseq_forward"
}
...
...
@@ -280,7 +280,7 @@ layers {
name: "__last_seq_2__"
type: "seqlastins"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__lstm_group_0__"
}
...
...
@@ -329,7 +329,7 @@ layers {
name: "__last_seq_3__"
type: "seqlastins"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__gru_group_0__"
}
...
...
@@ -378,7 +378,7 @@ layers {
name: "__last_seq_4__"
type: "seqlastins"
size: 200
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
}
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_seq_concat_reshape.protostr
浏览文件 @
8266546e
...
...
@@ -27,7 +27,7 @@ layers {
name: "__seqreshape_0__"
type: "seqreshape"
size: 5
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "data1"
}
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_sequence_pooling.protostr
浏览文件 @
8266546e
...
...
@@ -9,7 +9,7 @@ layers {
name: "__seq_pooling_0__"
type: "max"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "dat_in"
}
...
...
@@ -19,7 +19,7 @@ layers {
name: "__seq_pooling_1__"
type: "max"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "dat_in"
}
...
...
@@ -29,7 +29,7 @@ layers {
name: "__seq_pooling_2__"
type: "average"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "dat_in"
}
...
...
@@ -40,7 +40,7 @@ layers {
name: "__seq_pooling_3__"
type: "average"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "dat_in"
}
...
...
@@ -51,7 +51,7 @@ layers {
name: "__seq_pooling_4__"
type: "average"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "dat_in"
}
...
...
@@ -62,7 +62,7 @@ layers {
name: "__seq_pooling_5__"
type: "average"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "dat_in"
}
...
...
@@ -73,7 +73,7 @@ layers {
name: "__seq_pooling_6__"
type: "max"
size: 100
active_type: "
linear
"
active_type: ""
inputs {
input_layer_name: "dat_in"
}
...
...
python/paddle/trainer_config_helpers/tests/configs/test_repeat_layer.py
0 → 100644
浏览文件 @
8266546e
from
paddle.trainer_config_helpers
import
*
settings
(
batch_size
=
1000
,
learning_rate
=
1e-5
)
din
=
data_layer
(
name
=
'data'
,
size
=
30
)
outputs
(
repeat_layer
(
input
=
din
,
num_repeats
=
10
,
as_row_vector
=
True
),
repeat_layer
(
input
=
din
,
num_repeats
=
10
,
act
=
TanhActivation
(),
as_row_vector
=
False
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录