Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
825cea1d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
825cea1d
编写于
6月 09, 2020
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add augment
上级
aa9ff438
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
55 addition
and
10 deletion
+55
-10
configs/yolov4/yolov4_cspdarknet_coco.yml
configs/yolov4/yolov4_cspdarknet_coco.yml
+10
-0
configs/yolov4/yolov4_cspdarknet_voc.yml
configs/yolov4/yolov4_cspdarknet_voc.yml
+11
-0
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+18
-3
ppdet/modeling/backbones/cspdarknet.py
ppdet/modeling/backbones/cspdarknet.py
+2
-1
ppdet/modeling/losses/iou_loss.py
ppdet/modeling/losses/iou_loss.py
+9
-5
ppdet/modeling/losses/yolo_loss.py
ppdet/modeling/losses/yolo_loss.py
+5
-1
未找到文件。
configs/yolov4/yolov4_cspdarknet_coco.yml
浏览文件 @
825cea1d
...
...
@@ -90,6 +90,7 @@ TrainReader:
-
!DecodeImage
to_rgb
:
True
with_mosaic
:
True
with_mixup
:
True
-
!MosaicImage
offset
:
0.3
mosaic_scale
:
[
0.8
,
1.0
]
...
...
@@ -97,6 +98,15 @@ TrainReader:
sample_flip
:
0.5
use_cv2
:
true
interp
:
2
-
!MixupImage
alpha
:
1.5
beta
:
1.5
-
!ColorDistort
{}
-
!RandomExpand
fill_value
:
[
123.675
,
116.28
,
103.53
]
-
!RandomCrop
{}
-
!RandomFlipImage
is_normalized
:
false
-
!NormalizeBox
{}
-
!PadBox
num_max_boxes
:
90
...
...
configs/yolov4/yolov4_cspdarknet_voc.yml
浏览文件 @
825cea1d
...
...
@@ -89,6 +89,7 @@ TrainReader:
-
!DecodeImage
to_rgb
:
True
with_mosaic
:
True
with_mixup
:
True
-
!MosaicImage
offset
:
0.3
mosaic_scale
:
[
0.8
,
1.0
]
...
...
@@ -96,6 +97,15 @@ TrainReader:
sample_flip
:
0.5
use_cv2
:
true
interp
:
2
-
!MixupImage
alpha
:
1.5
beta
:
1.5
-
!ColorDistort
{}
-
!RandomExpand
fill_value
:
[
123.675
,
116.28
,
103.53
]
-
!RandomCrop
{}
-
!RandomFlipImage
is_normalized
:
false
-
!NormalizeBox
{}
-
!PadBox
num_max_boxes
:
90
...
...
@@ -124,6 +134,7 @@ TrainReader:
num_classes
:
20
iou_thresh
:
0.213
batch_size
:
8
mixup_epoch
:
250
mosaic_prob
:
0.3
mosaic_epoch
:
300
shuffle
:
true
...
...
ppdet/data/transform/operators.py
浏览文件 @
825cea1d
...
...
@@ -87,6 +87,11 @@ class BaseOperator(object):
return
str
(
self
.
_id
)
def
is_mosaiced
(
context
):
return
isinstance
(
context
,
dict
)
and
\
'mosaic'
in
context
and
context
[
'mosaic'
]
@
register_op
class
DecodeImage
(
BaseOperator
):
def
__init__
(
self
,
to_rgb
=
True
,
with_mosaic
=
False
,
with_mixup
=
False
):
...
...
@@ -670,6 +675,7 @@ class RandomDistort(BaseOperator):
def
__call__
(
self
,
sample
,
context
):
"""random distort the image"""
ops
=
[
self
.
random_brightness
,
self
.
random_contrast
,
self
.
random_saturation
,
self
.
random_hue
...
...
@@ -795,6 +801,7 @@ class CropImage(BaseOperator):
Returns:
sample: the image, bounding box are replaced.
"""
assert
'image'
in
sample
,
"image data not found"
im
=
sample
[
'image'
]
gt_bbox
=
sample
[
'gt_bbox'
]
...
...
@@ -1279,9 +1286,10 @@ class MosaicImage(BaseOperator):
def
__call__
(
self
,
sample
,
context
=
None
):
if
'mosaic0'
not
in
sample
:
sample
=
self
.
crop
(
sample
,
0
,
0
)
if
self
.
sample_flip
:
sample
=
self
.
sample_flip_fun
(
sample
,
self
.
sample_flip
)
# sample = self.crop(sample, 0, 0)
# if self.sample_flip:
# sample = self.sample_flip_fun(sample, self.sample_flip)
context
[
'mosaic'
]
=
False
return
sample
h
=
sample
[
'h'
]
w
=
sample
[
'w'
]
...
...
@@ -1346,6 +1354,7 @@ class MosaicImage(BaseOperator):
sample
.
pop
(
'mosaic1'
)
sample
.
pop
(
'mosaic2'
)
context
[
'mosaic'
]
=
True
return
sample
...
...
@@ -1533,6 +1542,9 @@ class MixupImage(BaseOperator):
return
img
.
astype
(
'uint8'
)
def
__call__
(
self
,
sample
,
context
=
None
):
if
is_mosaiced
(
context
):
return
sample
if
'mixup'
not
in
sample
:
return
sample
factor
=
np
.
random
.
beta
(
self
.
alpha
,
self
.
beta
)
...
...
@@ -2044,6 +2056,9 @@ class RandomCrop(BaseOperator):
return
crop_segms
def
__call__
(
self
,
sample
,
context
=
None
):
if
is_mosaiced
(
context
):
return
sample
if
'gt_bbox'
in
sample
and
len
(
sample
[
'gt_bbox'
])
==
0
:
return
sample
...
...
ppdet/modeling/backbones/cspdarknet.py
浏览文件 @
825cea1d
...
...
@@ -55,7 +55,8 @@ class CSPDarkNet(object):
return
fluid
.
layers
.
log
(
1
+
expf
)
def
_mish
(
self
,
input
):
return
input
*
fluid
.
layers
.
tanh
(
self
.
_softplus
(
input
))
return
fluid
.
layers
.
mish
(
input
)
# return input * fluid.layers.tanh(self._softplus(input))
def
_conv_norm
(
self
,
input
,
...
...
ppdet/modeling/losses/iou_loss.py
浏览文件 @
825cea1d
...
...
@@ -64,7 +64,8 @@ class IouLoss(object):
downsample_ratio
,
batch_size
,
ioup
=
None
,
eps
=
1.e-10
):
eps
=
1.e-10
,
scale_x_y
=
1.0
):
'''
Args:
x | y | w | h ([Variables]): the output of yolov3 for encoded x|y|w|h
...
...
@@ -75,9 +76,9 @@ class IouLoss(object):
eps (float): the decimal to prevent the denominator eqaul zero
'''
pred
=
self
.
_bbox_transform
(
x
,
y
,
w
,
h
,
anchors
,
downsample_ratio
,
batch_size
,
False
)
batch_size
,
False
,
scale_x_y
)
gt
=
self
.
_bbox_transform
(
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
batch_size
,
True
)
batch_size
,
True
,
1.0
)
iouk
=
self
.
_iou
(
pred
,
gt
,
ioup
,
eps
)
if
self
.
loss_square
:
loss_iou
=
1.
-
iouk
*
iouk
...
...
@@ -145,7 +146,7 @@ class IouLoss(object):
return
diou_term
+
ciou_term
def
_bbox_transform
(
self
,
dcx
,
dcy
,
dw
,
dh
,
anchors
,
downsample_ratio
,
batch_size
,
is_gt
):
batch_size
,
is_gt
,
scale_x_y
):
grid_x
=
int
(
self
.
_MAX_WI
/
downsample_ratio
)
grid_y
=
int
(
self
.
_MAX_HI
/
downsample_ratio
)
an_num
=
len
(
anchors
)
//
2
...
...
@@ -179,8 +180,11 @@ class IouLoss(object):
cy
.
gradient
=
True
else
:
dcx_sig
=
fluid
.
layers
.
sigmoid
(
dcx
)
cx
=
fluid
.
layers
.
elementwise_add
(
dcx_sig
,
gi
)
/
grid_x_act
dcy_sig
=
fluid
.
layers
.
sigmoid
(
dcy
)
if
abs
(
scale_x_y
-
1.0
)
>
1e-6
:
dcx_sig
=
scale_x_y
*
dcx_sig
-
0.5
*
(
scale_x_y
-
1.
)
dcy_sig
=
scale_x_y
*
dcy_sig
-
0.5
*
(
scale_x_y
-
1.
)
cx
=
fluid
.
layers
.
elementwise_add
(
dcx_sig
,
gi
)
/
grid_x_act
cy
=
fluid
.
layers
.
elementwise_add
(
dcy_sig
,
gj
)
/
grid_y_act
anchor_w_
=
[
anchors
[
i
]
for
i
in
range
(
0
,
len
(
anchors
))
if
i
%
2
==
0
]
...
...
ppdet/modeling/losses/yolo_loss.py
浏览文件 @
825cea1d
...
...
@@ -147,9 +147,13 @@ class YOLOv3Loss(object):
loss_w
=
fluid
.
layers
.
reduce_sum
(
loss_w
,
dim
=
[
1
,
2
,
3
])
loss_h
=
fluid
.
layers
.
abs
(
h
-
th
)
*
tscale_tobj
loss_h
=
fluid
.
layers
.
reduce_sum
(
loss_h
,
dim
=
[
1
,
2
,
3
])
scale_x_y
=
self
.
scale_x_y
if
not
isinstance
(
self
.
scale_x_y
,
Sequence
)
else
self
.
scale_x_y
[
i
]
if
self
.
_iou_loss
is
not
None
:
loss_iou
=
self
.
_iou_loss
(
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
downsample
,
self
.
_batch_size
)
downsample
,
self
.
_batch_size
,
scale_x_y
)
loss_iou
=
loss_iou
*
tscale_tobj
loss_iou
=
fluid
.
layers
.
reduce_sum
(
loss_iou
,
dim
=
[
1
,
2
,
3
])
loss_ious
.
append
(
fluid
.
layers
.
reduce_mean
(
loss_iou
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录