Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
812de6e8
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
812de6e8
编写于
8月 14, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Port utils to Python3
上级
6988aea9
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
66 addition
and
53 deletion
+66
-53
python/paddle/utils/dump_config.py
python/paddle/utils/dump_config.py
+2
-2
python/paddle/utils/image_multiproc.py
python/paddle/utils/image_multiproc.py
+9
-7
python/paddle/utils/image_util.py
python/paddle/utils/image_util.py
+4
-4
python/paddle/utils/make_model_diagram.py
python/paddle/utils/make_model_diagram.py
+26
-19
python/paddle/utils/merge_model.py
python/paddle/utils/merge_model.py
+1
-1
python/paddle/utils/plotcurve.py
python/paddle/utils/plotcurve.py
+2
-1
python/paddle/utils/predefined_net.py
python/paddle/utils/predefined_net.py
+3
-2
python/paddle/utils/preprocess_img.py
python/paddle/utils/preprocess_img.py
+7
-7
python/paddle/utils/preprocess_util.py
python/paddle/utils/preprocess_util.py
+5
-5
python/paddle/utils/show_pb.py
python/paddle/utils/show_pb.py
+5
-3
python/paddle/utils/torch2paddle.py
python/paddle/utils/torch2paddle.py
+2
-2
未找到文件。
python/paddle/utils/dump_config.py
浏览文件 @
812de6e8
...
...
@@ -37,9 +37,9 @@ if __name__ == '__main__':
assert
isinstance
(
conf
,
TrainerConfig_pb2
.
TrainerConfig
)
if
whole_conf
:
print
conf
print
(
conf
)
else
:
if
binary
:
sys
.
stdout
.
write
(
conf
.
model_config
.
SerializeToString
())
else
:
print
conf
.
model_config
print
(
conf
.
model_config
)
python/paddle/utils/image_multiproc.py
浏览文件 @
812de6e8
...
...
@@ -15,7 +15,8 @@
import
os
,
sys
import
numpy
as
np
from
PIL
import
Image
from
cStringIO
import
StringIO
import
six
from
six.moves
import
cStringIO
as
StringIO
import
multiprocessing
import
functools
import
itertools
...
...
@@ -187,7 +188,8 @@ class PILTransformer(ImageTransformer):
return
self
.
transform
(
im
)
def
job
(
is_img_string
,
transformer
,
(
data
,
label
)):
def
job
(
is_img_string
,
transformer
,
data_label_pack
):
(
data
,
label
)
=
data_label_pack
if
is_img_string
:
return
transformer
.
transform_from_string
(
data
),
label
else
:
...
...
@@ -208,7 +210,7 @@ class MultiProcessImageTransformer(object):
"""
Processing image with multi-process. If it is used in PyDataProvider,
the simple usage for CNN is as follows:
.. code-block:: python
def hool(settings, is_train, **kwargs):
...
...
@@ -229,7 +231,7 @@ class MultiProcessImageTransformer(object):
@provider(init_hook=hook, pool_size=20480)
def process(settings, file_list):
with open(file_list, 'r') as fdata:
for line in fdata:
for line in fdata:
data_dic = np.load(line.strip()) # load the data batch pickled by Pickle.
data = data_dic['data']
labels = data_dic['label']
...
...
@@ -249,10 +251,10 @@ class MultiProcessImageTransformer(object):
:type channel_swap: tuple or list
:param mean: the mean values of image, per-channel mean or element-wise mean.
:type mean: array, The dimension is 1 for per-channel mean.
The dimension is 3 for element-wise mean.
The dimension is 3 for element-wise mean.
:param is_train: training peroid or testing peroid.
:type is_train: bool.
:param is_color: the image is color or gray.
:param is_color: the image is color or gray.
:type is_color: bool.
:param is_img_string: The input can be the file name of image or image string.
:type is_img_string: bool.
...
...
@@ -273,4 +275,4 @@ class MultiProcessImageTransformer(object):
def
run
(
self
,
data
,
label
):
fun
=
functools
.
partial
(
job
,
self
.
is_img_string
,
self
.
transformer
)
return
self
.
pool
.
imap_unordered
(
fun
,
itertools
.
i
zip
(
data
,
label
),
chunksize
=
100
*
self
.
procnum
)
fun
,
six
.
moves
.
zip
(
data
,
label
),
chunksize
=
100
*
self
.
procnum
)
python/paddle/utils/image_util.py
浏览文件 @
812de6e8
...
...
@@ -14,7 +14,7 @@
import
numpy
as
np
from
PIL
import
Image
from
cStringIO
import
StringIO
from
six.moves
import
cStringIO
as
StringIO
def
resize_image
(
img
,
target_size
):
...
...
@@ -34,7 +34,7 @@ def flip(im):
"""
Return the flipped image.
Flip an image along the horizontal direction.
im: input image, (H x W x K) ndarrays
im: input image, (H x W x K) ndarrays
"""
if
len
(
im
.
shape
)
==
3
:
return
im
[:,
:,
::
-
1
]
...
...
@@ -132,7 +132,7 @@ def load_meta(meta_path, mean_img_size, crop_size, color=True):
def
load_image
(
img_path
,
is_color
=
True
):
"""
Load image and return.
Load image and return.
img_path: image path.
is_color: is color image or not.
"""
...
...
@@ -205,7 +205,7 @@ class ImageTransformer:
def
set_mean
(
self
,
mean
):
if
mean
is
not
None
:
# mean value, may be one value per channel
# mean value, may be one value per channel
if
mean
.
ndim
==
1
:
mean
=
mean
[:,
np
.
newaxis
,
np
.
newaxis
]
else
:
...
...
python/paddle/utils/make_model_diagram.py
浏览文件 @
812de6e8
...
...
@@ -15,6 +15,9 @@
# Generate dot diagram file for the given paddle model config
# The generated file can be viewed using Graphviz (http://graphviz.org)
from
__future__
import
print_function
import
six
import
sys
import
traceback
...
...
@@ -61,9 +64,9 @@ def make_diagram_from_proto(model_config, dot_file):
name2id
[
mem
.
link_name
])
return
s
print
>>
f
,
'digraph graphname {'
print
>>
f
,
'node [width=0.375,height=0.25];'
for
i
in
xrange
(
len
(
model_config
.
layers
)):
print
(
'digraph graphname {'
,
file
=
f
)
print
(
'node [width=0.375,height=0.25];'
,
file
=
f
)
for
i
in
six
.
moves
.
xrange
(
len
(
model_config
.
layers
)):
l
=
model_config
.
layers
[
i
]
name2id
[
l
.
name
]
=
i
...
...
@@ -71,12 +74,12 @@ def make_diagram_from_proto(model_config, dot_file):
for
sub_model
in
model_config
.
sub_models
:
if
sub_model
.
name
==
'root'
:
continue
print
>>
f
,
'subgraph cluster_%s {'
%
i
print
>>
f
,
'style=dashed;'
print
(
'subgraph cluster_%s {'
%
i
,
file
=
f
)
print
(
'style=dashed;'
,
file
=
f
)
label
=
'%s '
%
sub_model
.
name
if
sub_model
.
reversed
:
label
+=
'<=='
print
>>
f
,
'label = "%s";'
%
label
print
(
'label = "%s";'
%
label
,
file
=
f
)
i
+=
1
submodel_layers
.
add
(
sub_model
.
name
)
for
layer_name
in
sub_model
.
layer_names
:
...
...
@@ -84,37 +87,41 @@ def make_diagram_from_proto(model_config, dot_file):
lid
=
name2id
[
layer_name
]
layer_config
=
model_config
.
layers
[
lid
]
label
=
make_layer_label
(
layer_config
)
print
>>
f
,
'l%s [label="%s", shape=box];'
%
(
lid
,
label
)
print
>>
f
,
'}'
print
(
'l%s [label="%s", shape=box];'
%
(
lid
,
label
),
file
=
f
)
print
(
'}'
,
file
=
f
)
for
i
in
xrange
(
len
(
model_config
.
layers
)):
for
i
in
six
.
moves
.
xrange
(
len
(
model_config
.
layers
)):
l
=
model_config
.
layers
[
i
]
if
l
.
name
not
in
submodel_layers
:
label
=
make_layer_label
(
l
)
print
>>
f
,
'l%s [label="%s", shape=box];'
%
(
i
,
label
)
print
(
'l%s [label="%s", shape=box];'
%
(
i
,
label
),
file
=
f
)
for
sub_model
in
model_config
.
sub_models
:
if
sub_model
.
name
==
'root'
:
continue
for
link
in
sub_model
.
in_links
:
print
>>
f
,
make_link
(
link
)
print
(
make_link
(
link
),
file
=
f
)
for
link
in
sub_model
.
out_links
:
print
>>
f
,
make_link
(
link
)
print
(
make_link
(
link
),
file
=
f
)
for
mem
in
sub_model
.
memories
:
print
>>
f
,
make_mem
(
mem
)
print
(
make_mem
(
mem
),
file
=
f
)
for
i
in
xrange
(
len
(
model_config
.
layers
)):
for
i
in
six
.
moves
.
xrange
(
len
(
model_config
.
layers
)):
for
l
in
model_config
.
layers
[
i
].
inputs
:
print
>>
f
,
'l%s -> l%s [label="%s"];'
%
(
name2id
[
l
.
input_layer_name
],
i
,
l
.
input_parameter_name
)
print
(
'l%s -> l%s [label="%s"];'
%
(
name2id
[
l
.
input_layer_name
],
i
,
l
.
input_parameter_name
),
file
=
f
)
print
>>
f
,
'}'
print
(
'}'
,
file
=
f
)
f
.
close
()
def
usage
():
print
>>
sys
.
stderr
,
(
"Usage: python show_model_diagram.py"
+
" CONFIG_FILE DOT_FILE [config_str]"
)
print
(
(
"Usage: python show_model_diagram.py"
+
" CONFIG_FILE DOT_FILE [config_str]"
),
file
=
sys
.
stderr
)
exit
(
1
)
...
...
python/paddle/utils/merge_model.py
浏览文件 @
812de6e8
...
...
@@ -70,4 +70,4 @@ def merge_v2_model(net, param_file, output_file):
for
pname
in
param_names
:
params
.
serialize
(
pname
,
f
)
print
'Generate %s success!'
%
(
output_file
)
print
(
'Generate %s success!'
%
(
output_file
)
)
python/paddle/utils/plotcurve.py
浏览文件 @
812de6e8
...
...
@@ -44,6 +44,7 @@ To use this script to generate plot for AvgCost, error:
python plotcurve.py -i paddle.INFO -o figure.png AvgCost error
"""
import
six
import
sys
import
matplotlib
# the following line is added immediately after import matplotlib
...
...
@@ -91,7 +92,7 @@ def plot_paddle_curve(keys, inputfile, outputfile, format='png',
sys
.
stderr
.
write
(
"No data to plot. Exiting!
\n
"
)
return
m
=
len
(
keys
)
+
1
for
i
in
xrange
(
1
,
m
):
for
i
in
six
.
moves
.
xrange
(
1
,
m
):
pyplot
.
plot
(
x
[:,
0
],
x
[:,
i
],
...
...
python/paddle/utils/predefined_net.py
浏览文件 @
812de6e8
...
...
@@ -13,6 +13,7 @@
# limitations under the License.
import
numpy
as
np
import
six
import
os
from
paddle.trainer.config_parser
import
*
from
paddle.utils.preprocess_img
import
\
...
...
@@ -112,7 +113,7 @@ def simple_conv_net(data_conf, is_color=False):
num_classes: num of classes.
is_color: whether the input images are color.
"""
for
k
,
v
in
data_conf
.
iteritems
(
):
for
k
,
v
in
six
.
iteritems
(
data_conf
):
globals
()[
k
]
=
v
data_input
,
label_input
,
num_image_channels
=
\
image_data_layers
(
image_size
,
num_classes
,
is_color
,
is_predict
)
...
...
@@ -340,7 +341,7 @@ def small_vgg(data_conf, is_predict=False):
num_classes: num of classes.
is_color: whether the input images are color.
"""
for
k
,
v
in
data_conf
.
iteritems
(
):
for
k
,
v
in
six
.
iteritems
(
data_conf
):
globals
()[
k
]
=
v
vgg_conv_net
(
image_size
,
num_classes
,
num_layers
=
[
2
,
2
,
3
,
3
],
...
...
python/paddle/utils/preprocess_img.py
浏览文件 @
812de6e8
...
...
@@ -17,9 +17,9 @@ import os
import
random
import
numpy
as
np
import
PIL.Image
as
Image
import
StringIO
import
preprocess_util
from
image_util
import
crop_img
from
six.moves
import
cStringIO
as
StringIO
from
.
import
preprocess_util
from
.
image_util
import
crop_img
def
resize_image
(
img
,
target_size
):
...
...
@@ -52,7 +52,7 @@ class DiskImage:
def
read_image
(
self
):
if
self
.
img
is
None
:
print
"reading: "
+
self
.
path
print
(
"reading: "
+
self
.
path
)
image
=
resize_image
(
Image
.
open
(
self
.
path
),
self
.
target_size
)
self
.
img
=
image
...
...
@@ -69,7 +69,7 @@ class DiskImage:
convert the image into the paddle batch format.
"""
self
.
read_image
()
output
=
StringIO
.
StringIO
()
output
=
StringIO
()
self
.
img
.
save
(
output
,
"jpeg"
)
contents
=
output
.
getvalue
()
return
contents
...
...
@@ -127,7 +127,7 @@ class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater):
image_path
=
items
[
0
]
label_name
=
items
[
1
]
if
not
label_name
in
label_set
:
label_set
[
label_name
]
=
len
(
l
abel_set
.
keys
(
))
label_set
[
label_name
]
=
len
(
l
ist
(
label_set
.
keys
()
))
img
=
DiskImage
(
path
=
image_path
,
target_size
=
self
.
target_size
)
label
=
preprocess_util
.
Lablel
(
label
=
label_set
[
label_name
],
name
=
label_name
)
...
...
@@ -144,7 +144,7 @@ class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater):
return
create_dataset_from_list
(
path
)
label_set
=
preprocess_util
.
get_label_set_from_dir
(
path
)
data
=
[]
for
l_name
in
l
abel_set
.
keys
(
):
for
l_name
in
l
ist
(
label_set
.
keys
()
):
image_paths
=
preprocess_util
.
list_images
(
os
.
path
.
join
(
path
,
l_name
))
for
p
in
image_paths
:
...
...
python/paddle/utils/preprocess_util.py
浏览文件 @
812de6e8
...
...
@@ -14,7 +14,7 @@
import
os
import
math
import
cPickle
as
pickle
import
six.moves.
cPickle
as
pickle
import
random
import
collections
...
...
@@ -169,7 +169,7 @@ class Dataset:
random
.
shuffle
(
keyvalue_indices
[
k
])
num_data_per_key_batch
=
\
math
.
ceil
(
num_per_batch
/
float
(
len
(
keyvalue_indices
.
keys
(
))))
math
.
ceil
(
num_per_batch
/
float
(
len
(
list
(
keyvalue_indices
.
keys
()
))))
if
num_data_per_key_batch
<
2
:
raise
Exception
(
"The number of data in a batch is too small"
)
...
...
@@ -182,8 +182,8 @@ class Dataset:
end_idx
=
int
(
min
(
begin_idx
+
num_data_per_key_batch
,
len
(
keyvalue_indices
[
k
])))
print
"begin_idx, end_idx"
print
begin_idx
,
end_idx
print
(
"begin_idx, end_idx"
)
print
(
begin_idx
,
end_idx
)
for
idx
in
range
(
begin_idx
,
end_idx
):
permuted_data
.
append
(
self
.
data
[
keyvalue_indices
[
k
][
idx
]])
keyvalue_readpointer
[
k
]
=
end_idx
...
...
@@ -357,6 +357,6 @@ class DatasetCreater(object):
data_batcher
.
create_batches_and_list
(
self
.
output_path
,
self
.
train_list_name
,
self
.
test_list_name
,
self
.
label_set_name
)
self
.
num_classes
=
len
(
train_label_set
.
keys
(
))
self
.
num_classes
=
len
(
list
(
train_label_set
.
keys
()
))
self
.
create_meta_file
(
train_data
)
return
out_path
python/paddle/utils/show_pb.py
浏览文件 @
812de6e8
...
...
@@ -15,6 +15,8 @@
Show the content of proto buffer data file of PADDLE
"""
from
__future__
import
print_function
import
os
import
sys
from
google.protobuf.internal.decoder
import
_DecodeVarint
...
...
@@ -39,7 +41,7 @@ def read_proto(file, message):
def
usage
():
print
>>
sys
.
stderr
,
"Usage: python show_pb.py PROTO_DATA_FILE"
print
(
"Usage: python show_pb.py PROTO_DATA_FILE"
,
file
=
sys
.
stderr
)
exit
(
1
)
...
...
@@ -50,8 +52,8 @@ if __name__ == '__main__':
f
=
open
(
sys
.
argv
[
1
])
header
=
DataFormat
.
DataHeader
()
read_proto
(
f
,
header
)
print
header
print
(
header
)
sample
=
DataFormat
.
DataSample
()
while
read_proto
(
f
,
sample
):
print
sample
print
(
sample
)
python/paddle/utils/torch2paddle.py
浏览文件 @
812de6e8
...
...
@@ -24,7 +24,7 @@ import sys
import
struct
import
numpy
as
np
import
torchfile
import
cPickle
as
pickle
import
six.moves.
cPickle
as
pickle
import
argparse
...
...
@@ -48,7 +48,7 @@ def save_net_parameters(layers, params, output_path):
biases
=
params
[
i
*
2
+
1
]
weight_file
=
os
.
path
.
join
(
output_path
,
'_%s.w0'
%
layers
[
i
])
biases_file
=
os
.
path
.
join
(
output_path
,
'_%s.wbias'
%
layers
[
i
])
print
"Saving for layer %s."
%
layers
[
i
]
print
(
"Saving for layer %s."
%
layers
[
i
])
save_layer_parameters
(
weight_file
,
[
weight
])
save_layer_parameters
(
biases_file
,
biases
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录