Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
80e882a3
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
80e882a3
编写于
6月 07, 2018
作者:
T
tensor-tang
提交者:
GitHub
6月 07, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11247 from tensor-tang/infer_api
Infer multi-threads API Demo and UT
上级
9141bee1
e030741d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
204 addition
and
3 deletion
+204
-3
paddle/contrib/inference/demo/simple_on_word2vec.cc
paddle/contrib/inference/demo/simple_on_word2vec.cc
+55
-1
paddle/contrib/inference/test_paddle_inference_api_impl.cc
paddle/contrib/inference/test_paddle_inference_api_impl.cc
+149
-2
未找到文件。
paddle/contrib/inference/demo/simple_on_word2vec.cc
浏览文件 @
80e882a3
...
...
@@ -19,8 +19,8 @@ limitations under the License. */
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <memory>
#include <thread>
#include "paddle/contrib/inference/paddle_inference_api.h"
namespace
paddle
{
namespace
demo
{
...
...
@@ -61,13 +61,67 @@ void Main(bool use_gpu) {
for
(
size_t
i
=
0
;
i
<
std
::
min
(
5UL
,
num_elements
);
i
++
)
{
LOG
(
INFO
)
<<
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
)[
i
];
}
// TODO(Superjomn): this is should be free automatically
free
(
outputs
[
0
].
data
.
data
);
}
}
void
MainThreads
(
int
num_threads
,
bool
use_gpu
)
{
// Multi-threads only support on CPU
// 0. Create PaddlePredictor with a config.
NativeConfig
config
;
config
.
model_dir
=
FLAGS_dirname
+
"word2vec.inference.model"
;
config
.
use_gpu
=
use_gpu
;
config
.
fraction_of_gpu_memory
=
0.15
;
config
.
device
=
0
;
auto
main_predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
std
::
vector
<
std
::
thread
>
threads
;
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
// 1. clone a predictor which shares the same parameters
auto
predictor
=
main_predictor
->
Clone
();
constexpr
int
num_batches
=
3
;
for
(
int
batch_id
=
0
;
batch_id
<
num_batches
;
++
batch_id
)
{
// 2. Dummy Input Data
int64_t
data
[
4
]
=
{
1
,
2
,
3
,
4
};
PaddleBuf
buf
{.
data
=
data
,
.
length
=
sizeof
(
data
)};
PaddleTensor
tensor
{.
name
=
""
,
.
shape
=
std
::
vector
<
int
>
({
4
,
1
}),
.
data
=
buf
,
.
dtype
=
PaddleDType
::
INT64
};
std
::
vector
<
PaddleTensor
>
inputs
(
4
,
tensor
);
std
::
vector
<
PaddleTensor
>
outputs
;
// 3. Run
CHECK
(
predictor
->
Run
(
inputs
,
&
outputs
));
// 4. Get output.
ASSERT_EQ
(
outputs
.
size
(),
1UL
);
LOG
(
INFO
)
<<
"TID: "
<<
tid
<<
", "
<<
"output buffer size: "
<<
outputs
.
front
().
data
.
length
;
const
size_t
num_elements
=
outputs
.
front
().
data
.
length
/
sizeof
(
float
);
// The outputs' buffers are in CPU memory.
for
(
size_t
i
=
0
;
i
<
std
::
min
(
5UL
,
num_elements
);
i
++
)
{
LOG
(
INFO
)
<<
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
)[
i
];
}
free
(
outputs
[
0
].
data
.
data
);
}
});
}
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
threads
[
i
].
join
();
}
}
TEST
(
demo
,
word2vec_cpu
)
{
Main
(
false
/*use_gpu*/
);
}
TEST
(
demo_multi_threads
,
word2vec_cpu_1
)
{
MainThreads
(
1
,
false
/*use_gpu*/
);
}
TEST
(
demo_multi_threads
,
word2vec_cpu_4
)
{
MainThreads
(
4
,
false
/*use_gpu*/
);
}
#ifdef PADDLE_WITH_CUDA
TEST
(
demo
,
word2vec_gpu
)
{
Main
(
true
/*use_gpu*/
);
}
TEST
(
demo_multi_threads
,
word2vec_gpu_1
)
{
MainThreads
(
1
,
true
/*use_gpu*/
);
}
TEST
(
demo_multi_threads
,
word2vec_gpu_4
)
{
MainThreads
(
4
,
true
/*use_gpu*/
);
}
#endif
}
// namespace demo
...
...
paddle/contrib/inference/test_paddle_inference_api_impl.cc
浏览文件 @
80e882a3
...
...
@@ -15,6 +15,8 @@ limitations under the License. */
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <thread>
#include "gflags/gflags.h"
#include "paddle/contrib/inference/paddle_inference_api_impl.h"
#include "paddle/fluid/inference/tests/test_helper.h"
...
...
@@ -45,14 +47,19 @@ NativeConfig GetConfig() {
config
.
model_dir
=
FLAGS_dirname
+
"word2vec.inference.model"
;
LOG
(
INFO
)
<<
"dirname "
<<
config
.
model_dir
;
config
.
fraction_of_gpu_memory
=
0.15
;
#ifdef PADDLE_WITH_CUDA
config
.
use_gpu
=
true
;
#else
config
.
use_gpu
=
false
;
#endif
config
.
device
=
0
;
return
config
;
}
TEST
(
paddle_inference_api_impl
,
word2vec
)
{
void
MainWord2Vec
(
bool
use_gpu
)
{
NativeConfig
config
=
GetConfig
();
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
config
.
use_gpu
=
use_gpu
;
framework
::
LoDTensor
first_word
,
second_word
,
third_word
,
fourth_word
;
framework
::
LoD
lod
{{
0
,
1
}};
...
...
@@ -100,11 +107,12 @@ TEST(paddle_inference_api_impl, word2vec) {
free
(
outputs
[
0
].
data
.
data
);
}
TEST
(
paddle_inference_api_impl
,
image_classification
)
{
void
MainImageClassification
(
bool
use_gpu
)
{
int
batch_size
=
2
;
bool
use_mkldnn
=
false
;
bool
repeat
=
false
;
NativeConfig
config
=
GetConfig
();
config
.
use_gpu
=
use_gpu
;
config
.
model_dir
=
FLAGS_dirname
+
"image_classification_resnet.inference.model"
;
...
...
@@ -149,4 +157,143 @@ TEST(paddle_inference_api_impl, image_classification) {
free
(
data
);
}
void
MainThreadsWord2Vec
(
bool
use_gpu
)
{
NativeConfig
config
=
GetConfig
();
config
.
use_gpu
=
use_gpu
;
auto
main_predictor
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
// prepare inputs data and reference results
constexpr
int
num_jobs
=
3
;
std
::
vector
<
std
::
vector
<
framework
::
LoDTensor
>>
jobs
(
num_jobs
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
paddle_tensor_feeds
(
num_jobs
);
std
::
vector
<
framework
::
LoDTensor
>
refs
(
num_jobs
);
for
(
size_t
i
=
0
;
i
<
jobs
.
size
();
++
i
)
{
// each job has 4 words
jobs
[
i
].
resize
(
4
);
for
(
size_t
j
=
0
;
j
<
4
;
++
j
)
{
framework
::
LoD
lod
{{
0
,
1
}};
int64_t
dict_size
=
2073
;
// The size of dictionary
SetupLoDTensor
(
&
jobs
[
i
][
j
],
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
-
1
);
paddle_tensor_feeds
[
i
].
push_back
(
LodTensorToPaddleTensor
(
&
jobs
[
i
][
j
]));
}
// get reference result of each job
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
ref_feeds
;
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
ref_fetches
(
1
,
&
refs
[
i
]);
for
(
auto
&
word
:
jobs
[
i
])
{
ref_feeds
.
push_back
(
&
word
);
}
TestInference
<
platform
::
CPUPlace
>
(
config
.
model_dir
,
ref_feeds
,
ref_fetches
);
}
// create threads and each thread run 1 job
std
::
vector
<
std
::
thread
>
threads
;
for
(
int
tid
=
0
;
tid
<
num_jobs
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
auto
predictor
=
main_predictor
->
Clone
();
auto
&
local_inputs
=
paddle_tensor_feeds
[
tid
];
std
::
vector
<
PaddleTensor
>
local_outputs
;
ASSERT_TRUE
(
predictor
->
Run
(
local_inputs
,
&
local_outputs
));
// check outputs range
ASSERT_EQ
(
local_outputs
.
size
(),
1UL
);
const
size_t
len
=
local_outputs
[
0
].
data
.
length
;
float
*
data
=
static_cast
<
float
*>
(
local_outputs
[
0
].
data
.
data
);
for
(
size_t
j
=
0
;
j
<
len
/
sizeof
(
float
);
++
j
)
{
ASSERT_LT
(
data
[
j
],
1.0
);
ASSERT_GT
(
data
[
j
],
-
1.0
);
}
// check outputs correctness
float
*
ref_data
=
refs
[
tid
].
data
<
float
>
();
EXPECT_EQ
(
refs
[
tid
].
numel
(),
static_cast
<
int64_t
>
(
len
/
sizeof
(
float
)));
for
(
int
i
=
0
;
i
<
refs
[
tid
].
numel
();
++
i
)
{
EXPECT_NEAR
(
ref_data
[
i
],
data
[
i
],
1e-3
);
}
free
(
data
);
});
}
for
(
int
i
=
0
;
i
<
num_jobs
;
++
i
)
{
threads
[
i
].
join
();
}
}
void
MainThreadsImageClassification
(
bool
use_gpu
)
{
constexpr
int
num_jobs
=
4
;
// each job run 1 batch
constexpr
int
batch_size
=
1
;
NativeConfig
config
=
GetConfig
();
config
.
use_gpu
=
use_gpu
;
config
.
model_dir
=
FLAGS_dirname
+
"image_classification_resnet.inference.model"
;
auto
main_predictor
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
);
std
::
vector
<
framework
::
LoDTensor
>
jobs
(
num_jobs
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
paddle_tensor_feeds
(
num_jobs
);
std
::
vector
<
framework
::
LoDTensor
>
refs
(
num_jobs
);
for
(
size_t
i
=
0
;
i
<
jobs
.
size
();
++
i
)
{
// prepare inputs
std
::
vector
<
std
::
vector
<
int64_t
>>
feed_target_shapes
=
GetFeedTargetShapes
(
config
.
model_dir
,
/*is_combined*/
false
);
feed_target_shapes
[
0
][
0
]
=
batch_size
;
framework
::
DDim
input_dims
=
framework
::
make_ddim
(
feed_target_shapes
[
0
]);
SetupTensor
<
float
>
(
&
jobs
[
i
],
input_dims
,
0.
f
,
1.
f
);
paddle_tensor_feeds
[
i
].
push_back
(
LodTensorToPaddleTensor
(
&
jobs
[
i
]));
// get reference result of each job
std
::
vector
<
framework
::
LoDTensor
*>
ref_feeds
(
1
,
&
jobs
[
i
]);
std
::
vector
<
framework
::
LoDTensor
*>
ref_fetches
(
1
,
&
refs
[
i
]);
TestInference
<
platform
::
CPUPlace
>
(
config
.
model_dir
,
ref_feeds
,
ref_fetches
);
}
// create threads and each thread run 1 job
std
::
vector
<
std
::
thread
>
threads
;
for
(
int
tid
=
0
;
tid
<
num_jobs
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
auto
predictor
=
main_predictor
->
Clone
();
auto
&
local_inputs
=
paddle_tensor_feeds
[
tid
];
std
::
vector
<
PaddleTensor
>
local_outputs
;
ASSERT_TRUE
(
predictor
->
Run
(
local_inputs
,
&
local_outputs
));
// check outputs correctness
ASSERT_EQ
(
local_outputs
.
size
(),
1UL
);
const
size_t
len
=
local_outputs
[
0
].
data
.
length
;
float
*
data
=
static_cast
<
float
*>
(
local_outputs
[
0
].
data
.
data
);
float
*
ref_data
=
refs
[
tid
].
data
<
float
>
();
EXPECT_EQ
(
refs
[
tid
].
numel
(),
len
/
sizeof
(
float
));
for
(
int
i
=
0
;
i
<
refs
[
tid
].
numel
();
++
i
)
{
EXPECT_NEAR
(
ref_data
[
i
],
data
[
i
],
1e-3
);
}
free
(
data
);
});
}
for
(
int
i
=
0
;
i
<
num_jobs
;
++
i
)
{
threads
[
i
].
join
();
}
}
TEST
(
inference_api_native
,
word2vec_cpu
)
{
MainWord2Vec
(
false
/*use_gpu*/
);
}
TEST
(
inference_api_native
,
word2vec_cpu_threads
)
{
MainThreadsWord2Vec
(
false
/*use_gpu*/
);
}
TEST
(
inference_api_native
,
image_classification_cpu
)
{
MainThreadsImageClassification
(
false
/*use_gpu*/
);
}
TEST
(
inference_api_native
,
image_classification_cpu_threads
)
{
MainThreadsImageClassification
(
false
/*use_gpu*/
);
}
#ifdef PADDLE_WITH_CUDA
TEST
(
inference_api_native
,
word2vec_gpu
)
{
MainWord2Vec
(
true
/*use_gpu*/
);
}
TEST
(
inference_api_native
,
word2vec_gpu_threads
)
{
MainThreadsWord2Vec
(
true
/*use_gpu*/
);
}
TEST
(
inference_api_native
,
image_classification_gpu
)
{
MainThreadsImageClassification
(
true
/*use_gpu*/
);
}
TEST
(
inference_api_native
,
image_classification_gpu_threads
)
{
MainThreadsImageClassification
(
true
/*use_gpu*/
);
}
#endif
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录