Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
80ce7edb
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
80ce7edb
编写于
1月 09, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
make farward correct
上级
74f519ff
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
170 addition
and
137 deletion
+170
-137
paddle/operators/hierarchical_sigmoid_op.cc
paddle/operators/hierarchical_sigmoid_op.cc
+2
-2
paddle/operators/hierarchical_sigmoid_op.h
paddle/operators/hierarchical_sigmoid_op.h
+15
-20
paddle/operators/math/math_function_impl.h
paddle/operators/math/math_function_impl.h
+4
-4
paddle/operators/math/matrix_bit_code.cc
paddle/operators/math/matrix_bit_code.cc
+65
-91
paddle/operators/math/matrix_bit_code.h
paddle/operators/math/matrix_bit_code.h
+12
-13
python/paddle/v2/fluid/tests/op_test.py
python/paddle/v2/fluid/tests/op_test.py
+5
-4
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
+67
-3
未找到文件。
paddle/operators/hierarchical_sigmoid_op.cc
浏览文件 @
80ce7edb
...
...
@@ -70,7 +70,7 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
}
protected:
framework
::
OpKernelType
GetKernelType
(
framework
::
OpKernelType
Get
Actual
KernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
...
...
@@ -96,7 +96,7 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
}
protected:
framework
::
OpKernelType
GetKernelType
(
framework
::
OpKernelType
Get
Actual
KernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
...
...
paddle/operators/hierarchical_sigmoid_op.h
浏览文件 @
80ce7edb
...
...
@@ -49,34 +49,31 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
&
device_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
RowwiseSum
<
DeviceContext
,
T
>
row_sum
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
ids
->
data
<
int64_t
>
())
;
std
::
vector
<
int64_t
>
sum_dims
({
batch_size
,
1UL
});
sum
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
sum_dims
),
ctx
.
GetPlace
());
auto
sum_mat
=
EigenMatrix
<
T
>::
From
(
sum
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
if
(
bias
)
{
bit_code
.
Add
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
*
bias
);
bit_code
.
Add
(
pre_out
,
*
bias
);
}
for
(
int
i
=
0
;
i
<
in
->
dims
()[
0
]
;
++
i
)
{
bit_code
.
Mul
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
w
->
Slice
(
i
,
i
+
1
),
in
->
Slice
(
i
,
i
+
1
)
);
for
(
int
64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
w_i
=
w
->
Slice
(
i
,
i
+
1
);
bit_code
.
Mul
(
pre_out
,
w_i
,
*
in
);
}
// clip the matrix with (-40, 40)
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
.
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
bit_code
.
Sum
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
*
out
,
static_cast
<
T
>
(
-
1
));
bit_code
.
Sum
(
pre_out
,
*
out
,
static_cast
<
T
>
(
-
1
));
// softrelu with threshold is 40.0
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
.
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
pre_out_mat
.
device
(
place
)
=
(
static_cast
<
T
>
(
1.0
)
+
pre_out_mat
.
exp
()).
log
();
row_sum
(
device_ctx
,
pre_out
,
&
sum
);
out_mat
.
device
(
place
)
=
sum_mat
+
out_mat
;
}
...
...
@@ -103,28 +100,26 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
pre_out
);
// init pre_out matrix with {1.0}
math
::
SetConstant
<
DeviceContext
,
T
>
one
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
ids
->
data
<
int64_t
>
())
;
one
(
device_ctx
,
&
pre_out
,
static_cast
<
T
>
(
1.0
));
// softrelu derivative
pre_out_mat
.
device
(
place
)
=
pre_out_mat
*
(
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
);
bit_code
.
Sub
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
);
bit_code
.
Sub
(
pre_out
);
if
(
bias
)
{
bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bit_code
.
AddGrad
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
*
bias
);
bit_code
.
AddGrad
(
pre_out
,
*
bias
);
}
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
w
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
int
i
=
0
;
i
<
in_grad
->
dims
()[
0
];
++
i
)
{
auto
p_sliced
=
w
->
Slice
(
i
,
i
+
1
);
auto
in_sliced
=
in
->
Slice
(
i
,
i
+
1
);
auto
in_grad_sliced
=
in_grad
->
Slice
(
i
,
i
+
1
);
bit_code
.
MulGradWeight
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
p_sliced
,
in_sliced
);
bit_code
.
MulGradError
(
num_classes
,
ids
->
data
<
int64_t
>
(),
pre_out
,
p_sliced
,
in_grad_sliced
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
w_i
=
w
->
Slice
(
i
,
i
+
1
);
// auto in_i = in->Slice(i, i + 1);
// auto in_grad_i = in_grad->Slice(i, i + 1);
bit_code
.
MulGradWeight
(
pre_out
,
w_i
,
*
in
);
bit_code
.
MulGradError
(
pre_out
,
w_i
,
*
in_grad
);
}
}
};
...
...
paddle/operators/math/math_function_impl.h
浏览文件 @
80ce7edb
...
...
@@ -62,13 +62,13 @@ void ColwiseSum<DeviceContext, T>::operator()(const DeviceContext& context,
template
<
typename
DeviceContext
,
typename
T
>
void
RowwiseSum
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
vector
)
{
framework
::
Tensor
*
out
)
{
auto
in_dims
=
input
.
dims
();
auto
size
=
input
.
numel
()
/
in_dims
[
1
];
PADDLE_ENFORCE_EQ
(
vector
->
numel
(),
size
);
PADDLE_ENFORCE_EQ
(
out
->
numel
(),
size
);
auto
in
=
framework
::
EigenMatrix
<
T
,
Eigen
::
ColMajor
>::
From
(
input
);
auto
vec
=
framework
::
Eigen
Matrix
<
T
,
Eigen
::
ColMajor
>::
From
(
*
vector
);
auto
in
=
framework
::
EigenMatrix
<
T
>::
From
(
input
);
auto
vec
=
framework
::
Eigen
Vector
<
T
>::
Flatten
(
*
out
);
vec
.
device
(
*
context
.
eigen_device
())
=
in
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
1
}}));
}
...
...
paddle/operators/math/matrix_bit_code.cc
浏览文件 @
80ce7edb
...
...
@@ -22,7 +22,7 @@ namespace math {
* CodeTable class should support 3 functions:
*
* size_t size()
* return the number of
code
s
* return the number of
id
s
*
* int getMaxCodeLength()
* return the maximal code length
...
...
@@ -45,56 +45,47 @@ namespace math {
*
*/
/*
for i:
for j < codeLength:
op(a(i, j), b(0, index(i, j)))
*/
template
<
typename
T
,
class
CodeTable
,
class
Op
>
static
void
AddByBitCodeT
(
Op
op
,
CodeTable
code_table
,
const
int64_t
*
codes
,
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
)
{
size_t
num_sample
=
tmat
.
dims
()[
0
];
size_t
width
=
vec
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_sample
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
]));
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Add
(
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
auto
t
=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
auto
v
=
vec
.
data
<
T
>
()[
index
];
op
(
t
,
v
);
tmat
.
data
<
T
>
()[
i
*
width
+
j
]
+=
vec
.
data
<
T
>
()[
index
];
}
}
}
template
<
typename
T
,
class
CodeTable
>
void
SubByBitCodeT
(
CodeTable
code_table
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
)
{
// size_t max_code_length = code_table.get_max_code_length(
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
o_
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
]));
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
vec
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
tmat
.
data
<
T
>
()[
i
*
o_width
+
j
]
-=
1
;
}
size_t
index
=
code
.
calc_index
(
j
);
vec
.
data
<
T
>
()[
index
]
+=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
}
}
}
template
<
typename
T
,
class
CodeTable
>
void
SumByBitCodeT
(
CodeTable
code_table
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
sum
,
const
T
&
scale_sum
)
{
// size_t max_code_length = code_table.get_max_code_length();
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
sum
,
T
scale_sum
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
o_width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
T
sm
=
static_cast
<
T
>
(
0.0
);
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
]));
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
...
...
@@ -106,116 +97,99 @@ void SumByBitCodeT(CodeTable code_table, const int64_t* codes,
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Add
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
)
{
auto
op
=
[](
T
&
t
,
const
T
&
v
)
{
t
+=
v
;
};
AddByBitCodeT
<
T
>
(
op
,
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
vec
);
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
vec
)
{
auto
op
=
[](
T
&
t
,
T
&
v
)
{
v
+=
t
;
};
AddByBitCodeT
<
T
>
(
op
,
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
vec
);
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
sum
,
T
scale_sum
)
{
SumByBitCodeT
<
T
>
(
SimpleCodeTable
(
num_classes
),
codes
,
tmat
,
sum
,
scale_sum
);
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Mul
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
Mul
(
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
weight_width
=
weight
.
dims
()[
1
];
auto
tmat_p
=
tmat
.
data
<
T
>
();
auto
weight_p
=
weight
.
data
<
T
>
();
auto
input_p
=
input
.
data
<
T
>
();
auto
code_table
=
SimpleCodeTable
(
num_classes
);
size_t
weight_width
=
weight
.
dims
()[
2
];
auto
tmat_value
=
tmat
.
data
<
T
>
();
auto
weight_value
=
weight
.
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
]));
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
T
sum
=
static_cast
<
T
>
(
0.0
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
sum
+=
weight_p
[
weight_width
*
index
+
k
]
*
input_p
[
input_width
*
i
+
k
];
sum
+=
weight_value
[
weight_width
*
index
+
k
]
*
input_value
[
input_width
*
i
+
k
];
}
tmat_
p
[
i
*
tmat_width
+
j
]
+=
sum
;
tmat_
value
[
i
*
tmat_width
+
j
]
+=
sum
;
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
size_t
num_classes
,
const
int64_t
*
codes
,
const
framework
::
Tensor
&
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
weight_width
=
weight
.
dims
()[
1
];
auto
tmat_p
=
tmat
.
data
<
T
>
();
auto
weight_p
=
weight
.
data
<
T
>
();
auto
input_p
=
input
.
data
<
T
>
();
auto
code_table
=
SimpleCodeTable
(
num_classes
);
auto
tmat_value
=
tmat
.
data
<
T
>
();
auto
weight_value
=
weight
.
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
]));
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
weight_
p
[
weight_width
*
index
*
k
]
+=
tmat_
p
[
i
*
weight_width
*
j
]
*
input_p
[
input_width
*
i
+
k
];
weight_
value
[
weight_width
*
index
*
k
]
+=
tmat_
value
[
i
*
weight_width
*
j
]
*
input_value
[
input_width
*
i
+
k
];
}
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
MulGradError
(
size_t
num_classes
,
const
int64_t
*
codes
,
const
framework
::
Tensor
&
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
MulGradError
(
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
weight_width
=
weight
.
dims
()[
1
];
auto
tmat_p
=
tmat
.
data
<
T
>
();
auto
weight_p
=
weight
.
data
<
T
>
();
auto
input_p
=
input
.
data
<
T
>
();
auto
code_table
=
SimpleCodeTable
(
num_classes
);
auto
tmat_value
=
tmat
.
data
<
T
>
();
auto
weight_value
=
weight
.
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
codes
[
i
]));
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
input_p
[
weight_width
*
index
*
k
]
+=
tmat_p
[
i
*
weight_width
*
j
]
*
weight_p
[
weight_width
*
i
+
k
];
input_value
[
weight_width
*
index
*
k
]
+=
tmat_value
[
i
*
weight_width
*
j
]
*
weight_value
[
weight_width
*
i
+
k
];
}
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sub
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
)
{
SubByBitCodeT
<
T
>
(
SimpleCodeTable
(
num_classes
),
codes
,
tmat
);
void
MatrixBitCodeFunctor
<
T
>::
Sub
(
framework
::
Tensor
&
tmat
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
o_width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
]));
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
tmat
.
data
<
T
>
()[
i
*
o_width
+
j
]
-=
1
;
}
}
}
}
template
class
MatrixBitCodeFunctor
<
float
>;
...
...
paddle/operators/math/matrix_bit_code.h
浏览文件 @
80ce7edb
...
...
@@ -63,46 +63,45 @@ struct SimpleCodeTable {
template
<
typename
T
>
class
MatrixBitCodeFunctor
{
public:
explicit
MatrixBitCodeFunctor
(
size_t
num_classes
,
const
int64_t
*
ids
)
:
num_classes_
(
num_classes
),
ids_
(
ids
)
{}
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
*/
void
Add
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
);
void
Add
(
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
);
/* For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void
AddGrad
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
vec
);
void
AddGrad
(
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
vec
);
/* For j < code_length
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
*/
void
Sum
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
sum
,
T
scale_sum
);
void
Sum
(
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
sum
,
T
scale_sum
);
/* For j < code_length
tmat(i, j) -= bit(i, j)
*/
void
Sub
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tmat
);
void
Sub
(
framework
::
Tensor
&
tmat
);
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
void
Mul
(
size_t
num_classes
,
const
int64_t
*
codes
,
framework
::
Tensor
&
tma
t
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
);
void
Mul
(
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weigh
t
,
const
framework
::
Tensor
&
input
);
/* For index(i, j) >= 0:
weight.row(index(i, j)) += tmat(i, j) * input.row(i)
*/
void
MulGradWeight
(
size_t
num_classes
,
const
int64_t
*
codes
,
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
weight
,
void
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
);
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
void
MulGradError
(
size_t
num_classes
,
const
int64_t
*
codes
,
const
framework
::
Tensor
&
tmat
,
void
MulGradError
(
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
&
input
);
size_t
num_classes_
;
const
int64_t
*
ids_
;
};
}
// namespace math
}
// namespace operators
...
...
python/paddle/v2/fluid/tests/op_test.py
浏览文件 @
80ce7edb
...
...
@@ -49,6 +49,7 @@ def create_op(scope, op_type, inputs, outputs, attrs):
for
attr_name
in
Operator
.
get_op_attr_names
(
op_type
):
if
attr_name
in
attrs
:
kwargs
[
attr_name
]
=
attrs
[
attr_name
]
return
Operator
(
op_type
,
**
kwargs
)
...
...
@@ -104,8 +105,6 @@ def get_numeric_gradient(scope,
tensor_to_check_dtype
=
np
.
float32
elif
tensor_to_check_dtype
==
core
.
DataType
.
FP64
:
tensor_to_check_dtype
=
np
.
float64
elif
tensor_to_check_dtype
==
core
.
DataType
.
INT64
:
tensor_to_check_dtype
=
np
.
int64
else
:
raise
ValueError
(
"Not supported data type "
+
str
(
tensor_to_check_dtype
))
...
...
@@ -115,8 +114,6 @@ def get_numeric_gradient(scope,
def
__get_elem__
(
tensor
,
i
):
if
tensor_to_check_dtype
==
np
.
float32
:
return
tensor
.
get_float_element
(
i
)
elif
tensor_to_check_dtype
==
np
.
int64
:
return
tensor
.
get_int64_element
(
i
)
else
:
return
tensor
.
get_double_element
(
i
)
...
...
@@ -356,11 +353,13 @@ class OpTest(unittest.TestCase):
op_attrs
=
self
.
attrs
if
hasattr
(
self
,
"attrs"
)
else
dict
()
self
.
op
=
create_op
(
self
.
scope
,
self
.
op_type
,
op_inputs
,
op_outputs
,
op_attrs
)
if
no_grad_set
is
None
:
no_grad_set
=
set
()
if
not
type
(
output_names
)
is
list
:
output_names
=
[
output_names
]
numeric_grads
=
user_defined_grads
or
[
get_numeric_gradient
(
self
.
scope
,
...
...
@@ -456,7 +455,9 @@ class OpTest(unittest.TestCase):
# infer variable type and infer shape in compile-time
op
.
desc
.
infer_var_type
(
block
.
desc
)
op
.
desc
.
infer_shape
(
block
.
desc
)
mean_inputs
=
map
(
block
.
var
,
output_names
)
if
len
(
mean_inputs
)
==
1
:
loss
=
block
.
create_var
(
dtype
=
mean_inputs
[
0
].
dtype
,
shape
=
[
1
])
op
=
block
.
append_op
(
...
...
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
浏览文件 @
80ce7edb
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
math
def
find_latest_set
(
num
):
return
1
+
int
(
math
.
floor
(
math
.
log
(
num
,
2
)))
class
CodeTable
(
object
):
def
__init__
(
self
,
num_classes
,
code
):
self
.
c
=
num_classes
+
code
def
cal_index
(
self
,
bit
):
return
(
self
.
c
>>
(
bit
+
1
))
-
1
def
get_length
(
self
):
return
find_latest_set
(
self
.
c
)
-
1
def
cal_bit
(
self
,
bit
):
return
self
.
c
&
(
1
<<
bit
)
def
hsigmoid
(
x
,
w
,
ids
,
bias
,
num_classes
):
# code length =
# initialize pre out with dims={batch_size, code_length}
batch_size
=
x
.
shape
[
0
]
code_length
=
find_latest_set
(
num_classes
-
1
)
code_table
=
[
0
for
_
in
range
(
code_length
)]
pre_output
=
np
.
zeros
((
batch_size
,
code_length
))
pre_sum
=
np
.
zeros
((
batch_size
,
1
))
out
=
np
.
zeros
((
batch_size
,
1
)).
astype
(
"float32"
)
# pre_out += code(bias)
for
i
in
xrange
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
ids
[
i
])
length
=
code_table
.
get_length
()
for
j
in
xrange
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
0
][
idx
]
# pre_out += code(w) * x
for
i
in
xrange
(
batch_size
):
for
j
in
xrange
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
ids
[
j
])
length
=
code_table
.
get_length
()
for
k
in
xrange
(
length
):
idx
=
code_table
.
cal_index
(
k
)
sum
=
0.0
for
l
in
xrange
(
x
.
shape
[
1
]):
sum
+=
w
[
i
][
idx
][
l
]
*
x
[
j
][
l
]
pre_output
[
j
][
k
]
+=
sum
# clip[-40.0, 40.0]
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
for
i
in
xrange
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
ids
[
i
])
length
=
code_table
.
get_length
()
sum
=
0.0
for
j
in
xrange
(
length
):
if
code_table
.
cal_bit
(
j
):
sum
+=
pre_output
[
i
][
j
]
out
[
i
]
=
-
1.0
*
sum
# soft relu
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
pre_output
=
np
.
log
(
1
+
np
.
exp
(
pre_output
))
pre_sum
=
pre_output
.
sum
(
1
).
reshape
((
batch_size
,
1
))
out
+=
pre_sum
return
out
class
TestHSigmoidOp
(
OpTest
):
...
...
@@ -16,9 +81,8 @@ class TestHSigmoidOp(OpTest):
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Ids'
:
ids
,
'Bias'
:
bias
}
self
.
attrs
=
{
'num_classes'
:
num_classes
}
self
.
outputs
=
{
'Out'
:
np
.
random
.
random
((
batch_size
,
1
)).
astype
(
"float32"
)
}
out
=
hsigmoid
(
x
,
w
,
ids
,
bias
,
num_classes
)
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录