Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
7eb65b31
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7eb65b31
编写于
11月 07, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into avx_cmake
上级
7abd1bdf
3014645d
变更
52
隐藏空白更改
内联
并排
Showing
52 changed file
with
1006 addition
and
236 deletion
+1006
-236
paddle/framework/lod_tensor.md
paddle/framework/lod_tensor.md
+3
-13
paddle/framework/op_desc.cc
paddle/framework/op_desc.cc
+13
-1
paddle/framework/operator.cc
paddle/framework/operator.cc
+11
-1
paddle/framework/operator.h
paddle/framework/operator.h
+3
-4
paddle/framework/shape_inference.cc
paddle/framework/shape_inference.cc
+17
-0
paddle/framework/shape_inference.h
paddle/framework/shape_inference.h
+12
-0
paddle/framework/var_type.h
paddle/framework/var_type.h
+36
-0
paddle/framework/variable.h
paddle/framework/variable.h
+5
-0
paddle/gserver/layers/ConvBaseProjection.cpp
paddle/gserver/layers/ConvBaseProjection.cpp
+6
-6
paddle/gserver/layers/ConvBaseProjection.h
paddle/gserver/layers/ConvBaseProjection.h
+1
-1
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+8
-1
paddle/operators/accuracy_op.cu
paddle/operators/accuracy_op.cu
+2
-5
paddle/operators/conv2d_transpose_cudnn_op.cu
paddle/operators/conv2d_transpose_cudnn_op.cu
+0
-1
paddle/operators/conv_cudnn_op.cu
paddle/operators/conv_cudnn_op.cu
+0
-1
paddle/operators/conv_shift_op.cu
paddle/operators/conv_shift_op.cu
+2
-6
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+5
-10
paddle/operators/fill_constant_batch_size_like_op.cc
paddle/operators/fill_constant_batch_size_like_op.cc
+19
-12
paddle/operators/fill_constant_op.cc
paddle/operators/fill_constant_op.cc
+5
-2
paddle/operators/fill_constant_op.cu
paddle/operators/fill_constant_op.cu
+2
-1
paddle/operators/increment_op.cc
paddle/operators/increment_op.cc
+10
-8
paddle/operators/increment_op.cu
paddle/operators/increment_op.cu
+4
-1
paddle/operators/increment_op.h
paddle/operators/increment_op.h
+2
-2
paddle/operators/lookup_table_op.cu
paddle/operators/lookup_table_op.cu
+8
-12
paddle/operators/multiplex_op.cu
paddle/operators/multiplex_op.cu
+2
-6
paddle/operators/nccl_op.cu
paddle/operators/nccl_op.cu
+1
-3
paddle/operators/sum_op.cc
paddle/operators/sum_op.cc
+47
-5
paddle/operators/sum_op.h
paddle/operators/sum_op.h
+35
-7
paddle/operators/tensor_array_read_write_op.cc
paddle/operators/tensor_array_read_write_op.cc
+218
-0
paddle/optimizer/CMakeLists.txt
paddle/optimizer/CMakeLists.txt
+3
-10
paddle/optimizer/adadelta_optimizer.cc
paddle/optimizer/adadelta_optimizer.cc
+14
-0
paddle/optimizer/adadelta_optimizer.h
paddle/optimizer/adadelta_optimizer.h
+14
-0
paddle/optimizer/adagrad_optimizer.cc
paddle/optimizer/adagrad_optimizer.cc
+14
-0
paddle/optimizer/adagrad_optimizer.h
paddle/optimizer/adagrad_optimizer.h
+14
-0
paddle/optimizer/adam_optimizer.cc
paddle/optimizer/adam_optimizer.cc
+14
-0
paddle/optimizer/adam_optimizer.h
paddle/optimizer/adam_optimizer.h
+14
-0
paddle/optimizer/optimizer.cc
paddle/optimizer/optimizer.cc
+25
-12
paddle/optimizer/optimizer.h
paddle/optimizer/optimizer.h
+14
-0
paddle/optimizer/parameter_optimizer.cc
paddle/optimizer/parameter_optimizer.cc
+14
-0
paddle/optimizer/parameter_optimizer.h
paddle/optimizer/parameter_optimizer.h
+14
-0
paddle/optimizer/parameter_optimizer_test.cc
paddle/optimizer/parameter_optimizer_test.cc
+1
-1
paddle/optimizer/serialization_test.cc
paddle/optimizer/serialization_test.cc
+0
-0
paddle/optimizer/sgd_optimizer.cc
paddle/optimizer/sgd_optimizer.cc
+14
-0
paddle/optimizer/sgd_optimizer.h
paddle/optimizer/sgd_optimizer.h
+14
-1
paddle/pybind/protobuf.cc
paddle/pybind/protobuf.cc
+13
-42
paddle/scripts/docker/build.sh
paddle/scripts/docker/build.sh
+1
-0
python/paddle/v2/framework/executor.py
python/paddle/v2/framework/executor.py
+5
-2
python/paddle/v2/framework/framework.py
python/paddle/v2/framework/framework.py
+12
-4
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+97
-10
python/paddle/v2/framework/tests/test_array_read_write_op.py
python/paddle/v2/framework/tests/test_array_read_write_op.py
+93
-0
python/paddle/v2/framework/tests/test_fill_constant_batch_size_like_op.py
.../framework/tests/test_fill_constant_batch_size_like_op.py
+8
-3
python/paddle/v2/framework/tests/test_framework_debug_str.py
python/paddle/v2/framework/tests/test_framework_debug_str.py
+13
-0
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+104
-42
未找到文件。
paddle/framework/lod_tensor.md
浏览文件 @
7eb65b31
...
...
@@ -140,19 +140,9 @@ Similarly, the lengths in the top level LoD
are transformed into offsets of elements/words as follows:
```
0 9 10 15
= = =
3+2+4 1+9 2+3+10
```
so we can tell that the first article is from word 0 to word 9, and the second article is from word 9 to word 10.
The complete offset representation is as follows:
```
0 9 10 15
0 3 5 9 10 12 15
||| || |||| | || |||
0 3 4 6
= = =
3 3+1 4+2
```
## Slicing of LoD Tensors
...
...
paddle/framework/op_desc.cc
浏览文件 @
7eb65b31
...
...
@@ -67,8 +67,11 @@ class CompileTimeInferShapeContext : public InferShapeContext {
out
);
in_var
->
SetLoDLevel
(
out_var
->
GetLodLevel
());
}
bool
IsRuntime
()
const
override
;
protected:
VarDesc
::
VarType
GetVarType
(
const
std
::
string
&
name
)
const
override
;
private:
DDim
GetDim
(
const
std
::
string
&
name
)
const
override
;
void
SetDim
(
const
std
::
string
&
name
,
const
DDim
&
dim
)
override
;
...
...
@@ -349,6 +352,9 @@ void OpDescBind::InferVarType(BlockDescBind *block) const {
info
.
infer_var_type_
(
*
this
,
block
);
}
else
{
// all output type is LoDTensor by default
VLOG
(
10
)
<<
this
->
Type
()
<<
" has not registered InferVarType. Set output variables to "
"LOD_TENSOR"
;
for
(
auto
&
out_pair
:
this
->
outputs_
)
{
for
(
auto
&
out_var_name
:
out_pair
.
second
)
{
block
->
Var
(
out_var_name
)
->
SetType
(
VarDesc
::
LOD_TENSOR
);
...
...
@@ -448,6 +454,12 @@ void CompileTimeInferShapeContext::SetDim(const std::string &name,
const
DDim
&
dim
)
{
block_
.
FindVarRecursive
(
name
)
->
SetShape
(
framework
::
vectorize
(
dim
));
}
bool
CompileTimeInferShapeContext
::
IsRuntime
()
const
{
return
false
;
}
VarDesc
::
VarType
CompileTimeInferShapeContext
::
GetVarType
(
const
std
::
string
&
name
)
const
{
return
block_
.
FindVarRecursive
(
name
)
->
GetType
();
}
}
// namespace framework
}
// namespace paddle
paddle/framework/operator.cc
浏览文件 @
7eb65b31
...
...
@@ -15,7 +15,9 @@ limitations under the License. */
#include "paddle/framework/operator.h"
#include <algorithm>
#include <atomic>
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/shape_inference.h"
#include "paddle/framework/var_type.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -365,7 +367,9 @@ class RuntimeInferShapeContext : public InferShapeContext {
out_tensor
->
set_lod
(
in_tensor
.
lod
());
}
private:
bool
IsRuntime
()
const
override
{
return
true
;
}
protected:
DDim
GetDim
(
const
std
::
string
&
name
)
const
override
{
Variable
*
var
=
scope_
.
FindVar
(
name
);
if
(
var
->
IsType
<
LoDTensor
>
())
{
...
...
@@ -388,6 +392,12 @@ class RuntimeInferShapeContext : public InferShapeContext {
}
}
VarDesc
::
VarType
GetVarType
(
const
std
::
string
&
name
)
const
override
{
auto
*
var
=
scope_
.
FindVar
(
name
);
return
ToVarType
(
var
->
Type
());
}
private:
const
OperatorBase
&
op_
;
const
Scope
&
scope_
;
};
...
...
paddle/framework/operator.h
浏览文件 @
7eb65b31
...
...
@@ -298,11 +298,10 @@ class ExecutionContext {
}
#ifdef PADDLE_WITH_CUDA
const
platform
::
CUDADeviceContext
&
cuda_device_context
()
const
{
const
inline
platform
::
CUDADeviceContext
&
cuda_device_context
()
const
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
device_context_
.
GetPlace
()));
auto
cuda_ctx
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
*>
(
&
device_context_
);
return
*
cuda_ctx
;
return
*
reinterpret_cast
<
const
platform
::
CUDADeviceContext
*>
(
&
device_context_
);
}
#endif
...
...
paddle/framework/shape_inference.cc
浏览文件 @
7eb65b31
...
...
@@ -46,6 +46,23 @@ void InferShapeContext::SetDims(const std::vector<std::string> &names,
SetDim
(
names
[
i
],
dims
[
i
]);
}
}
std
::
vector
<
VarDesc
::
VarType
>
InferShapeContext
::
GetInputsVarType
(
const
std
::
string
&
name
)
const
{
return
GetVarTypes
(
Inputs
(
name
));
}
std
::
vector
<
VarDesc
::
VarType
>
InferShapeContext
::
GetOutputsVarType
(
const
std
::
string
&
name
)
const
{
return
GetVarTypes
(
Outputs
(
name
));
}
std
::
vector
<
VarDesc
::
VarType
>
InferShapeContext
::
GetVarTypes
(
const
std
::
vector
<
std
::
string
>
&
names
)
const
{
std
::
vector
<
VarDesc
::
VarType
>
retv
;
retv
.
resize
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
retv
.
begin
(),
std
::
bind
(
std
::
mem_fn
(
&
InferShapeContext
::
GetVarType
),
this
,
std
::
placeholders
::
_1
));
return
retv
;
}
}
// namespace framework
}
// namespace paddle
paddle/framework/shape_inference.h
浏览文件 @
7eb65b31
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/framework/attribute.h"
#include "paddle/framework/ddim.h"
#include "paddle/framework/framework.pb.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -26,6 +27,10 @@ class InferShapeContext {
virtual
bool
HasInput
(
const
std
::
string
&
name
)
const
=
0
;
virtual
bool
HasOutput
(
const
std
::
string
&
name
)
const
=
0
;
std
::
vector
<
VarDesc
::
VarType
>
GetInputsVarType
(
const
std
::
string
&
name
)
const
;
std
::
vector
<
VarDesc
::
VarType
>
GetOutputsVarType
(
const
std
::
string
&
name
)
const
;
virtual
bool
HasInputs
(
const
std
::
string
&
name
)
const
=
0
;
virtual
bool
HasOutputs
(
const
std
::
string
&
name
)
const
=
0
;
...
...
@@ -46,6 +51,8 @@ class InferShapeContext {
virtual
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
=
0
;
virtual
bool
IsRuntime
()
const
=
0
;
protected:
virtual
framework
::
DDim
GetDim
(
const
std
::
string
&
name
)
const
=
0
;
virtual
void
SetDim
(
const
std
::
string
&
name
,
const
framework
::
DDim
&
dim
)
=
0
;
...
...
@@ -55,6 +62,11 @@ class InferShapeContext {
void
SetDims
(
const
std
::
vector
<
std
::
string
>
&
names
,
const
std
::
vector
<
framework
::
DDim
>
&
dims
);
std
::
vector
<
VarDesc
::
VarType
>
GetVarTypes
(
const
std
::
vector
<
std
::
string
>
&
names
)
const
;
virtual
VarDesc
::
VarType
GetVarType
(
const
std
::
string
&
name
)
const
=
0
;
};
}
// namespace framework
...
...
paddle/framework/var_type.h
0 → 100644
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor_array.h"
namespace
paddle
{
namespace
framework
{
inline
VarDesc
::
VarType
ToVarType
(
std
::
type_index
type
)
{
if
(
type
.
hash_code
()
==
typeid
(
LoDTensor
).
hash_code
())
{
return
VarDesc_VarType_LOD_TENSOR
;
}
else
if
(
type
.
hash_code
()
==
typeid
(
LoDRankTable
).
hash_code
())
{
return
VarDesc_VarType_LOD_RANK_TABLE
;
}
else
if
(
type
.
hash_code
()
==
typeid
(
LoDTensorArray
).
hash_code
())
{
return
VarDesc_VarType_LOD_TENSOR_ARRAY
;
}
else
{
PADDLE_THROW
(
"ToVarType:Unsupported type %s"
,
type
.
name
());
}
}
}
// namespace framework
}
// namespace paddle
paddle/framework/variable.h
浏览文件 @
7eb65b31
...
...
@@ -48,6 +48,11 @@ class Variable {
void
Clear
()
{
holder_
.
reset
();
}
std
::
type_index
Type
()
const
{
PADDLE_ENFORCE
(
holder_
!=
nullptr
,
"Must hold memory"
);
return
holder_
->
Type
();
}
private:
struct
Placeholder
{
virtual
~
Placeholder
()
{}
...
...
paddle/gserver/layers/ConvBaseProjection.cpp
浏览文件 @
7eb65b31
...
...
@@ -17,7 +17,7 @@ limitations under the License. */
namespace
paddle
{
ThreadLocalD
<
std
::
vector
<
MemoryHandle
*
>>
ConvBaseProjection
::
convMem_
;
ThreadLocalD
<
std
::
vector
<
MemoryHandle
Ptr
>>
ConvBaseProjection
::
convMem_
;
ConvBaseProjection
::
ConvBaseProjection
(
const
ProjectionConfig
&
config
,
ParameterPtr
parameter
,
...
...
@@ -175,18 +175,18 @@ void ConvBaseProjection::reshape(int batchSize) {
}
void
*
ConvBaseProjection
::
getSpaceBytes
(
size_t
size
)
{
std
::
vector
<
MemoryHandle
*
>
&
convMem
=
*
convMem_
;
std
::
vector
<
MemoryHandle
Ptr
>
&
convMem
=
*
convMem_
;
if
(
convMem
.
empty
())
{
int
numDevices
=
hl_get_device_count
();
convMem
.
resize
(
numDevices
);
}
int
devId
=
hl_get_device
();
MemoryHandle
**
localMem
=
&
(
convMem
[
devId
])
;
if
(
NULL
==
*
localMem
||
size
>
(
*
localMem
)
->
getAllocSize
())
{
*
localMem
=
new
GpuMemoryHandle
(
size
);
MemoryHandle
Ptr
localMem
=
convMem
[
devId
]
;
if
(
NULL
==
localMem
||
size
>
localMem
->
getAllocSize
())
{
localMem
=
std
::
make_shared
<
GpuMemoryHandle
>
(
size
);
}
return
(
*
localMem
)
->
getBuf
();
return
localMem
->
getBuf
();
}
ConvBaseProjection
::~
ConvBaseProjection
()
{
...
...
paddle/gserver/layers/ConvBaseProjection.h
浏览文件 @
7eb65b31
...
...
@@ -105,7 +105,7 @@ protected:
bool
bias_
;
std
::
unique_ptr
<
Weight
>
weight_
;
static
ThreadLocalD
<
std
::
vector
<
MemoryHandle
*
>>
convMem_
;
static
ThreadLocalD
<
std
::
vector
<
MemoryHandle
Ptr
>>
convMem_
;
};
}
// namespace paddle
paddle/operators/CMakeLists.txt
浏览文件 @
7eb65b31
...
...
@@ -110,7 +110,7 @@ function(op_library TARGET)
# It's enough to just adding one operator to pybind
file
(
APPEND
${
pybind_file
}
"USE_GPU_ONLY_OP(ncclAllReduce);
\n
"
)
endif
()
# reduce_op contains several operators
if
(
"
${
TARGET
}
"
STREQUAL
"reduce_op"
)
set
(
pybind_flag 1
)
...
...
@@ -118,6 +118,11 @@ function(op_library TARGET)
file
(
APPEND
${
pybind_file
}
"USE_OP(reduce_sum);
\n
"
)
endif
()
if
(
"
${
TARGET
}
"
STREQUAL
"tensor_array_read_write_op"
)
set
(
pybind_flag 1
)
file
(
APPEND
${
pybind_file
}
"USE_NO_KERNEL_OP(read_from_array);
\n
USE_NO_KERNEL_OP(write_to_array);
\n
"
)
endif
()
# pybind USE_NO_KERNEL_OP
# HACK: if REGISTER_OP_CPU_KERNEL presents the operator must have kernel
file
(
READ
${
TARGET
}
.cc TARGET_CONTENT
)
...
...
@@ -161,6 +166,7 @@ set(DEPS_OPS
sequence_pool_op
lod_rank_table_op
lstm_op
tensor_array_read_write_op
gru_op
)
op_library
(
cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op
)
...
...
@@ -171,6 +177,7 @@ op_library(sum_op DEPS net_op selected_rows_functor)
op_library
(
pool_op DEPS pooling
)
op_library
(
pool_with_index_op DEPS pooling
)
op_library
(
lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table
)
op_library
(
tensor_array_read_write_op SRCS tensor_array_read_write_op.cc
)
if
(
WITH_GPU
)
op_library
(
nccl_op DEPS nccl_common
)
endif
()
...
...
paddle/operators/accuracy_op.cu
浏览文件 @
7eb65b31
...
...
@@ -72,11 +72,8 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
}
AccuracyCudaKernel
<
PADDLE_CUDA_NUM_THREADS
><<<
1
,
PADDLE_CUDA_NUM_THREADS
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
num_samples
,
infer_width
,
indices_data
,
label_data
,
accuracy_data
);
1
,
PADDLE_CUDA_NUM_THREADS
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
num_samples
,
infer_width
,
indices_data
,
label_data
,
accuracy_data
);
}
};
...
...
paddle/operators/conv2d_transpose_cudnn_op.cu
浏览文件 @
7eb65b31
...
...
@@ -27,7 +27,6 @@ using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using
ScopedFilterDescriptor
=
platform
::
ScopedFilterDescriptor
;
using
ScopedConvolutionDescriptor
=
platform
::
ScopedConvolutionDescriptor
;
using
DataLayout
=
platform
::
DataLayout
;
using
CUDADeviceContext
=
platform
::
CUDADeviceContext
;
static
constexpr
size_t
kConvCudnnWorkspaceLimitBytes
=
1024
*
1024
*
1024
;
...
...
paddle/operators/conv_cudnn_op.cu
浏览文件 @
7eb65b31
...
...
@@ -27,7 +27,6 @@ using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using
ScopedFilterDescriptor
=
platform
::
ScopedFilterDescriptor
;
using
ScopedConvolutionDescriptor
=
platform
::
ScopedConvolutionDescriptor
;
using
DataLayout
=
platform
::
DataLayout
;
using
CUDADeviceContext
=
platform
::
CUDADeviceContext
;
static
constexpr
size_t
kCONV_CUDNN_WORKSPACE_LIMIT_BYTES
=
1024
*
1024
*
1024
;
...
...
paddle/operators/conv_shift_op.cu
浏览文件 @
7eb65b31
...
...
@@ -130,9 +130,7 @@ class ConvShiftKernel<platform::GPUPlace, T> : public framework::OpKernel<T> {
dim3
grid_dim
(
num_x_blocks
,
batch_size
);
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
();
auto
stream
=
context
.
cuda_device_context
().
stream
();
conv_shift_forward
<
T
><<<
grid_dim
,
x_per_block
,
mem_per_block
,
stream
>>>
(
x_data
,
y_data
,
out_data
,
x_width
,
y_width
,
y_half_width
,
batch_size
);
...
...
@@ -159,9 +157,7 @@ class ConvShiftGradKernel<platform::GPUPlace, T>
int
y_width
=
Y
->
dims
()[
1
];
int
y_half_width
=
(
y_width
-
1
)
/
2
;
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
();
auto
stream
=
context
.
cuda_device_context
().
stream
();
const
int
x_per_block
=
256
;
int
num_x_blocks
=
div_up
(
x_width
,
x_per_block
);
...
...
paddle/operators/cross_entropy_op.cu
浏览文件 @
7eb65b31
...
...
@@ -82,24 +82,19 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel<T> {
int
block
=
512
;
int
grid
=
(
batch_size
*
class_num
+
block
-
1
)
/
block
;
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
auto
*
label_data
=
label
->
data
<
T
>
();
SoftCrossEntropyGradientKernel
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
batch_size
,
class_num
);
SoftCrossEntropyGradientKernel
<
T
><<<
grid
,
block
,
0
,
stream
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
batch_size
,
class_num
);
}
else
{
math
::
SetConstant
<
platform
::
GPUPlace
,
T
>
functor
;
functor
(
ctx
.
device_context
(),
dx
,
0
);
auto
*
label_data
=
label
->
data
<
int64_t
>
();
grid
=
(
batch_size
+
block
-
1
)
/
block
;
CrossEntropyGradientKernel
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
()
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
batch_size
,
class_num
);
CrossEntropyGradientKernel
<
T
><<<
grid
,
block
,
0
,
stream
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
batch_size
,
class_num
);
}
}
};
...
...
paddle/operators/fill_constant_batch_size_like_op.cc
浏览文件 @
7eb65b31
...
...
@@ -34,15 +34,18 @@ class FillConstantBatchSizeLikeOp : public framework::OperatorWithKernel {
std
::
vector
<
int64_t
>
shape_int64
(
shape
.
size
(),
0
);
std
::
transform
(
shape
.
begin
(),
shape
.
end
(),
shape_int64
.
begin
(),
[](
int
a
)
{
return
static_cast
<
int64_t
>
(
a
);
});
auto
dims
=
framework
::
make_ddim
(
shape_int64
);
auto
output_dim
=
framework
::
make_ddim
(
shape_int64
);
int
dim_idx
=
ctx
->
Attrs
().
Get
<
int
>
(
"dim_idx"
);
PADDLE_ENFORCE_GE
(
dim_idx
,
0
);
PADDLE_ENFORCE_GT
(
static_cast
<
int
>
(
shape
.
size
()),
dim_idx
);
PADDLE_ENFORCE_GT
(
ctx
->
GetInputDim
(
"Input"
).
size
(),
dim_idx
);
int
input_dim_idx
=
ctx
->
Attrs
().
Get
<
int
>
(
"input_dim_idx"
);
PADDLE_ENFORCE_GE
(
input_dim_idx
,
0
);
PADDLE_ENFORCE_GT
(
ctx
->
GetInputDim
(
"Input"
).
size
(),
input_dim_idx
);
dims
[
dim_idx
]
=
ctx
->
GetInputDim
(
"Input"
)[
dim_idx
];
ctx
->
SetOutputDim
(
"Out"
,
dims
);
int
output_dim_idx
=
ctx
->
Attrs
().
Get
<
int
>
(
"output_dim_idx"
);
PADDLE_ENFORCE_GE
(
output_dim_idx
,
0
);
PADDLE_ENFORCE_GT
(
static_cast
<
int
>
(
shape
.
size
()),
output_dim_idx
);
output_dim
[
output_dim_idx
]
=
ctx
->
GetInputDim
(
"Input"
)[
input_dim_idx
];
ctx
->
SetOutputDim
(
"Out"
,
output_dim
);
}
protected:
...
...
@@ -69,8 +72,11 @@ class FillConstantBatchSizeLikeOpMaker
"(Tensor) Tensor of specified shape will be filled "
"with the specified value"
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"(vector<int>) The shape of the output"
);
AddAttr
<
int
>
(
"dim_idx"
,
"(int, default 0) The index of batch size dimension"
)
AddAttr
<
int
>
(
"input_dim_idx"
,
"(int, default 0) the index of input's batch size dimension"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"output_dim_idx"
,
"(int, default 0) the index of output's batch size dimension"
)
.
SetDefault
(
0
);
AddAttr
<
float
>
(
"value"
,
"(float, default 0) The value to be filled"
)
.
SetDefault
(
0.0
f
);
...
...
@@ -86,9 +92,10 @@ Fill up a variable with specified constant value.
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
fill_constant_batch_size_like
,
ops
::
FillConstantBatchSizeLikeOp
,
ops
::
FillConstantBatchSizeLikeOpMaker
);
REGISTER_OPERATOR
(
fill_constant_batch_size_like
,
ops
::
FillConstantBatchSizeLikeOp
,
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
FillConstantBatchSizeLikeOpMaker
);
REGISTER_OP_CPU_KERNEL
(
fill_constant_batch_size_like
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
...
...
paddle/operators/fill_constant_op.cc
浏览文件 @
7eb65b31
...
...
@@ -35,7 +35,9 @@ class FillConstantOp : public framework::OperatorWithKernel {
protected:
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
static_cast
<
framework
::
DataType
>
(
ctx
.
Attr
<
int
>
(
"data_type"
));
int
data_type
=
ctx
.
Attr
<
int
>
(
"data_type"
);
VLOG
(
10
)
<<
" FillConstant data_type = "
<<
data_type
;
return
static_cast
<
framework
::
DataType
>
(
data_type
);
}
};
...
...
@@ -71,4 +73,5 @@ REGISTER_OP_WITHOUT_GRADIENT(fill_constant, ops::FillConstantOp,
REGISTER_OP_CPU_KERNEL
(
fill_constant
,
ops
::
FillConstantOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
FillConstantOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
FillConstantOpKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
);
ops
::
FillConstantOpKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
FillConstantOpKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
paddle/operators/fill_constant_op.cu
浏览文件 @
7eb65b31
...
...
@@ -20,4 +20,5 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL
(
fill_constant
,
ops
::
FillConstantOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
FillConstantOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
,
ops
::
FillConstantOpKernel
<
paddle
::
platform
::
GPUPlace
,
int
>
);
ops
::
FillConstantOpKernel
<
paddle
::
platform
::
GPUPlace
,
int
>
,
ops
::
FillConstantOpKernel
<
paddle
::
platform
::
GPUPlace
,
int64_t
>
);
paddle/operators/increment_op.cc
浏览文件 @
7eb65b31
...
...
@@ -31,7 +31,6 @@ class IncrementOp : public framework::OperatorWithKernel {
}
};
template
<
typename
AttrType
>
class
IncrementOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
IncrementOpMaker
(
framework
::
OpProto
*
proto
,
...
...
@@ -39,10 +38,10 @@ class IncrementOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor of increment operator"
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of increment operator."
);
AddAttr
<
AttrType
>
(
"step"
,
"(float, default 1.0) "
"The step size by which the "
"input tensor will be incremented."
)
AddAttr
<
float
>
(
"step"
,
"(float, default 1.0) "
"The step size by which the "
"input tensor will be incremented."
)
.
SetDefault
(
1.0
);
AddComment
(
R"DOC(
Increment Operator.
...
...
@@ -73,7 +72,10 @@ class IncrementGradOpMaker : public framework::SingleGradOpDescMaker {
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
increment
,
ops
::
IncrementOp
,
ops
::
IncrementOpMaker
<
float
>
,
REGISTER_OPERATOR
(
increment
,
ops
::
IncrementOp
,
ops
::
IncrementOpMaker
,
ops
::
IncrementGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
increment
,
ops
::
IncrementKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
increment
,
ops
::
IncrementKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
IncrementKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
IncrementKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
IncrementKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
paddle/operators/increment_op.cu
浏览文件 @
7eb65b31
...
...
@@ -16,4 +16,7 @@
REGISTER_OP_GPU_KERNEL
(
increment
,
paddle
::
operators
::
IncrementKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle
::
operators
::
IncrementKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
paddle
::
operators
::
IncrementKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
,
paddle
::
operators
::
IncrementKernel
<
paddle
::
platform
::
GPUPlace
,
int
>
,
paddle
::
operators
::
IncrementKernel
<
paddle
::
platform
::
GPUPlace
,
int64_t
>
);
paddle/operators/increment_op.h
浏览文件 @
7eb65b31
...
...
@@ -19,7 +19,7 @@
namespace
paddle
{
namespace
operators
{
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
template
<
typename
Place
,
typename
T
>
class
IncrementKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
virtual
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
{
...
...
@@ -27,7 +27,7 @@ class IncrementKernel : public framework::OpKernel<T> {
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
tensor
->
mutable_data
<
T
>
(
in
->
place
());
auto
step
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"step"
));
auto
step
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"step"
));
auto
eigen_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
tensor
);
auto
eigen_in
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
in
);
...
...
paddle/operators/lookup_table_op.cu
浏览文件 @
7eb65b31
...
...
@@ -74,10 +74,9 @@ class LookupTableCUDAKernel : public framework::OpKernel<T> {
dim3
threads
(
128
,
8
);
dim3
grids
(
8
,
1
);
LookupTable
<
T
,
128
,
8
,
8
><<<
grids
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
output
,
table
,
ids
,
N
,
K
,
D
);
LookupTable
<
T
,
128
,
8
,
8
><<<
grids
,
threads
,
0
,
context
.
device_context
().
stream
()
>>>
(
output
,
table
,
ids
,
N
,
K
,
D
);
}
};
...
...
@@ -95,9 +94,7 @@ class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
auto
ids_dim
=
ids
->
dims
();
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
();
auto
stream
=
context
.
cuda_device_context
().
stream
();
// copy GPU memory to CPU pinned memory
framework
::
Vector
<
int64_t
>
new_rows
;
new_rows
.
resize
(
ids_dim
[
0
]);
...
...
@@ -136,11 +133,10 @@ class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
dim3
threads
(
128
,
8
);
dim3
grids
(
8
,
1
);
LookupTableGrad
<
T
,
128
,
8
,
8
><<<
grids
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
d_table
,
d_output
,
ids
,
N
,
K
,
D
);
LookupTableGrad
<
T
,
128
,
8
,
8
><<<
grids
,
threads
,
0
,
context
.
device_context
().
stream
()
>>>
(
d_table
,
d_output
,
ids
,
N
,
K
,
D
);
}
}
};
...
...
paddle/operators/multiplex_op.cu
浏览文件 @
7eb65b31
...
...
@@ -35,9 +35,7 @@ class MultiplexGPUKernel : public framework::OpKernel<T> {
Tensor
index_t_cpu
;
index_t_cpu
.
CopyFrom
(
*
ids
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
auto
*
index
=
index_t_cpu
.
data
<
int32_t
>
();
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
();
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
Place
place
=
boost
::
get
<
Place
>
(
ctx
.
GetPlace
());
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
int32_t
k
=
index
[
i
];
...
...
@@ -73,9 +71,7 @@ class MultiplexGradGPUKernel : public framework::OpKernel<T> {
index_t_cpu
.
CopyFrom
(
*
ids
,
platform
::
CPUPlace
(),
ctx
.
device_context
());
auto
*
index
=
index_t_cpu
.
data
<
int32_t
>
();
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
();
auto
stream
=
ctx
.
device_context
().
stream
();
Place
place
=
boost
::
get
<
Place
>
(
ctx
.
GetPlace
());
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
size_t
k
=
static_cast
<
size_t
>
(
index
[
i
]);
...
...
paddle/operators/nccl_op.cu
浏览文件 @
7eb65b31
...
...
@@ -64,9 +64,7 @@ class NCCLAllReduceKernel : public framework::OpKernel<T> {
auto
*
comm
=
ctx
.
Input
<
Communicator
>
(
"Communicator"
);
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
.
device_context
())
.
stream
();
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
// device id
int
gpu_id
=
boost
::
get
<
platform
::
GPUPlace
>
(
ctx
.
GetPlace
()).
GetDeviceId
();
...
...
paddle/operators/sum_op.cc
浏览文件 @
7eb65b31
...
...
@@ -24,10 +24,16 @@ class SumOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
"X"
),
"Inputs(X) should not be null"
);
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SumOp should not be null."
);
if
(
ctx
->
IsRuntime
()
&&
ctx
->
GetOutputsVarType
(
"Out"
)[
0
]
==
framework
::
VarDesc
::
LOD_TENSOR_ARRAY
)
{
return
;
// skip runtime infershape when is tensor array;
}
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
size_t
N
=
x_dims
.
size
();
PADDLE_ENFORCE_GT
(
N
,
1
,
"Input tensors count should > 1."
);
...
...
@@ -39,6 +45,28 @@ class SumOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"Out"
,
in_dim
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
protected:
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
x_vars
=
ctx
.
MultiInputVar
(
"X"
);
if
(
x_vars
[
0
]
->
IsType
<
framework
::
LoDTensor
>
())
{
return
framework
::
ToDataType
(
x_vars
[
0
]
->
Get
<
framework
::
LoDTensor
>
().
type
());
}
else
if
(
x_vars
[
0
]
->
IsType
<
framework
::
SelectedRows
>
())
{
return
framework
::
ToDataType
(
x_vars
[
0
]
->
Get
<
framework
::
SelectedRows
>
().
value
().
type
());
}
else
if
(
x_vars
[
0
]
->
IsType
<
framework
::
LoDTensorArray
>
())
{
auto
&
array
=
x_vars
[
0
]
->
Get
<
framework
::
LoDTensorArray
>
();
for
(
auto
&
each
:
array
)
{
if
(
each
.
numel
()
!=
0
)
{
return
framework
::
ToDataType
(
each
.
type
());
}
}
}
PADDLE_THROW
(
"Unexpected branch. Input type is %s"
,
x_vars
[
0
]
->
Type
().
name
());
}
};
class
SumOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -63,18 +91,32 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
void
operator
()(
const
framework
::
OpDescBind
&
op_desc
,
framework
::
BlockDescBind
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
auto
default_
var_type
=
framework
::
VarDesc
::
SELECTED_ROWS
;
auto
var_type
=
framework
::
VarDesc
::
SELECTED_ROWS
;
bool
any_input_is_lod_tensor
=
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
block
](
const
std
::
string
&
name
)
{
return
block
->
Var
(
name
)
->
GetType
()
==
framework
::
VarDesc
::
LOD_TENSOR
;
});
if
(
any_input_is_lod_tensor
)
{
default_var_type
=
framework
::
VarDesc
::
LOD_TENSOR
;
auto
is_tensor_array
=
[
block
](
const
std
::
string
&
name
)
{
return
block
->
Var
(
name
)
->
GetType
()
==
framework
::
VarDesc
::
LOD_TENSOR_ARRAY
;
};
bool
any_input_is_tensor_array
=
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
is_tensor_array
);
bool
all_inputs_are_tensor_array
=
std
::
all_of
(
inputs
.
begin
(),
inputs
.
end
(),
is_tensor_array
);
if
(
any_input_is_tensor_array
)
{
PADDLE_ENFORCE
(
all_inputs_are_tensor_array
);
var_type
=
framework
::
VarDesc
::
LOD_TENSOR_ARRAY
;
}
else
if
(
any_input_is_lod_tensor
)
{
var_type
=
framework
::
VarDesc
::
LOD_TENSOR
;
}
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetType
(
default_
var_type
);
block
->
Var
(
out_var_name
)
->
SetType
(
var_type
);
}
};
...
...
paddle/operators/sum_op.h
浏览文件 @
7eb65b31
...
...
@@ -11,6 +11,7 @@ limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/selected_rows_functor.h"
...
...
@@ -28,7 +29,7 @@ using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template
<
typename
Place
,
typename
T
>
class
SumKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
in_vars
=
context
.
MultiInputVar
(
"X"
);
int
N
=
in_vars
.
size
();
auto
out_var
=
context
.
OutputVar
(
"Out"
);
...
...
@@ -36,7 +37,7 @@ class SumKernel : public framework::OpKernel<T> {
bool
in_place
=
out_var
==
in_vars
[
0
];
if
(
out_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
result
=
EigenVector
<
T
>::
Flatten
(
*
out
);
...
...
@@ -51,11 +52,11 @@ class SumKernel : public framework::OpKernel<T> {
// If in_place, just skip the first tensor
for
(
int
i
=
in_place
?
1
:
0
;
i
<
N
;
i
++
)
{
if
(
in_vars
[
i
]
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
in_t
=
in_vars
[
i
]
->
Get
<
framework
::
LoDTensor
>
();
auto
&
in_t
=
in_vars
[
i
]
->
Get
<
framework
::
LoDTensor
>
();
auto
in
=
EigenVector
<
T
>::
Flatten
(
in_t
);
result
.
device
(
place
)
=
result
+
in
;
}
else
if
(
in_vars
[
i
]
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
in_t
=
in_vars
[
i
]
->
Get
<
framework
::
SelectedRows
>
();
auto
&
in_t
=
in_vars
[
i
]
->
Get
<
framework
::
SelectedRows
>
();
functor
(
context
.
device_context
(),
in_t
,
out
);
}
else
{
PADDLE_THROW
(
"Variable type must be LoDTensor/SelectedRows."
);
...
...
@@ -63,8 +64,8 @@ class SumKernel : public framework::OpKernel<T> {
}
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
PADDLE_ENFORCE
(
!
in_place
,
"SelectedRows not support inplace sum now"
);
auto
*
out
=
context
.
Output
<
SelectedRows
>
(
"Out"
);
auto
*
out_value
=
out
->
mutable_value
();
auto
*
out
=
context
.
Output
<
SelectedRows
>
(
"Out"
);
auto
*
out_value
=
out
->
mutable_value
();
// Runtime InferShape
size_t
first_dim
=
0
;
...
...
@@ -88,9 +89,36 @@ class SumKernel : public framework::OpKernel<T> {
offset
,
out
);
offset
+=
in_vars
[
i
]
->
Get
<
SelectedRows
>
().
value
().
numel
();
}
}
else
if
(
out_var
->
IsType
<
framework
::
LoDTensorArray
>
())
{
auto
&
out_array
=
*
out_var
->
GetMutable
<
framework
::
LoDTensorArray
>
();
for
(
size_t
i
=
in_place
?
1
:
0
;
i
<
in_vars
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
in_vars
[
i
]
->
IsType
<
framework
::
LoDTensorArray
>
(),
"Only support all inputs are TensorArray"
);
auto
&
in_array
=
in_vars
[
i
]
->
Get
<
framework
::
LoDTensorArray
>
();
for
(
size_t
i
=
0
;
i
<
in_array
.
size
();
++
i
)
{
if
(
in_array
[
i
].
numel
()
!=
0
)
{
if
(
i
>=
out_array
.
size
())
{
out_array
.
resize
(
i
+
1
);
}
if
(
out_array
[
i
].
numel
()
==
0
)
{
out_array
[
i
].
CopyFrom
(
in_array
[
i
],
in_array
[
i
].
place
(),
context
.
device_context
());
out_array
[
i
].
set_lod
(
in_array
[
i
].
lod
());
}
else
{
PADDLE_ENFORCE
(
out_array
[
i
].
lod
()
==
in_array
[
i
].
lod
());
auto
in
=
EigenVector
<
T
>::
Flatten
(
in_array
[
i
]);
auto
result
=
EigenVector
<
T
>::
Flatten
(
out_array
[
i
]);
result
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
result
+
in
;
}
}
}
}
}
else
{
PADDLE_THROW
(
"Unexpected branch, output variable type is %s"
,
out_var
->
Type
().
name
());
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/operators/tensor_array_read_write_op.cc
0 → 100644
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
class
ArrayOpBase
:
public
framework
::
OperatorBase
{
public:
ArrayOpBase
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
protected:
size_t
GetOffset
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
auto
*
i
=
scope
.
FindVar
(
Input
(
"I"
));
PADDLE_ENFORCE
(
i
!=
nullptr
,
"I must be set"
);
auto
&
i_tensor
=
i
->
Get
<
framework
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
i_tensor
.
numel
(),
1
);
size_t
offset
;
if
(
platform
::
is_gpu_place
(
i_tensor
.
place
()))
{
// FIXME: Avoid copy from GPU to CPU
framework
::
Tensor
t
;
t
.
CopyFrom
(
i_tensor
,
platform
::
CPUPlace
(),
dev_ctx
);
dev_ctx
.
Wait
();
offset
=
static_cast
<
size_t
>
(
*
t
.
data
<
int64_t
>
());
}
else
{
offset
=
static_cast
<
size_t
>
(
*
i_tensor
.
data
<
int64_t
>
());
}
return
offset
;
}
};
class
WriteToArrayOp
:
public
ArrayOpBase
{
public:
WriteToArrayOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
ArrayOpBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
auto
*
x
=
scope
.
FindVar
(
Input
(
"X"
));
PADDLE_ENFORCE
(
x
!=
nullptr
,
"X must be set"
);
auto
&
x_tensor
=
x
->
Get
<
framework
::
LoDTensor
>
();
size_t
offset
=
GetOffset
(
scope
,
dev_ctx
);
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
GetMutable
<
framework
::
LoDTensorArray
>
();
if
(
offset
>=
out
->
size
())
{
out
->
resize
(
offset
+
1
);
}
auto
*
out_tensor
=
&
out
->
at
(
offset
);
out_tensor
->
CopyFrom
(
x_tensor
,
dev_ctx
.
GetPlace
(),
dev_ctx
);
out_tensor
->
set_lod
(
x_tensor
.
lod
());
}
};
class
WriteToArrayOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
WriteToArrayOpProtoMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(LoDTensor) the tensor will be written to tensor array"
);
AddInput
(
"I"
,
"(Tensor) the subscript index in tensor array. The number of element "
"should be 1"
);
AddOutput
(
"Out"
,
"(TensorArray) the tensor array will be written"
);
AddComment
(
R"DOC(Write a LoDTensor to a LoDTensor array.
Assume T is LoDTensor, i is the subscript of the array, and A is the array. The
equation is
A[i] = T
)DOC"
);
}
};
class
WriteToArrayInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"I"
),
"Must set the subscript index"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
context
->
GetInputDim
(
"I"
)),
1
,
"The number of element of subscript index must be 1"
);
PADDLE_ENFORCE
(
context
->
HasInput
(
"X"
),
NotHasXError
());
PADDLE_ENFORCE
(
context
->
HasOutput
(
"Out"
),
NotHasOutError
());
context
->
SetOutputDim
(
"Out"
,
context
->
GetInputDim
(
"X"
));
}
protected:
virtual
const
char
*
NotHasXError
()
const
{
return
"Must set the lod tensor"
;
}
virtual
const
char
*
NotHasOutError
()
const
{
return
"Must set the lod tensor array"
;
}
};
class
WriteToArrayInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDescBind
&
op_desc
,
framework
::
BlockDescBind
*
block
)
const
override
{
for
(
auto
&
out_var
:
op_desc
.
OutputArgumentNames
())
{
VLOG
(
10
)
<<
"Set Variable "
<<
out_var
<<
" as LOD_TENSOR_ARRAY"
;
block
->
Var
(
out_var
)
->
SetType
(
framework
::
VarDesc
::
LOD_TENSOR_ARRAY
);
}
}
};
class
ReadFromArrayOp
:
public
ArrayOpBase
{
public:
ReadFromArrayOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
ArrayOpBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
auto
*
x
=
scope
.
FindVar
(
Input
(
"X"
));
PADDLE_ENFORCE
(
x
!=
nullptr
,
"X must be set"
);
auto
&
x_array
=
x
->
Get
<
framework
::
LoDTensorArray
>
();
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
));
PADDLE_ENFORCE
(
out
!=
nullptr
,
"Out must be set"
);
auto
*
out_tesnor
=
out
->
GetMutable
<
framework
::
LoDTensor
>
();
size_t
offset
=
GetOffset
(
scope
,
dev_ctx
);
PADDLE_ENFORCE_LT
(
offset
,
x_array
.
size
());
out_tesnor
->
CopyFrom
(
x_array
[
offset
],
dev_ctx
.
GetPlace
(),
dev_ctx
);
out_tesnor
->
set_lod
(
x_array
[
offset
].
lod
());
}
};
class
ReadFromArrayProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
ReadFromArrayProtoMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(TensorArray) the array will be read from."
);
AddInput
(
"I"
,
"(Tensor) the subscript index in tensor array. The number of "
"element should be 1"
);
AddOutput
(
"Out"
,
"(LoDTensor) the tensor will be read from."
);
AddComment
(
R"DOC(Read a LoDTensor from a LoDTensor Array
Assume T is LoDTensor, i is th e subscript of the array, and A is the array. The
equation is
T = A[i]
)DOC"
);
}
};
class
ReadFromArrayInferShape
:
public
WriteToArrayInferShape
{
protected:
const
char
*
NotHasXError
()
const
override
{
return
"The input array X must be set"
;
}
const
char
*
NotHasOutError
()
const
override
{
return
"The output tensor out must be set"
;
}
};
class
WriteToArrayGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDescBind
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDescBind
();
grad_op
->
SetType
(
"read_from_array"
);
grad_op
->
SetInput
(
"I"
,
Input
(
"I"
));
grad_op
->
SetInput
(
"X"
,
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
"Out"
,
InputGrad
(
"X"
));
grad_op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDescBind
>
(
grad_op
);
}
};
class
ReadFromArrayGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDescBind
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDescBind
();
grad_op
->
SetType
(
"write_to_array"
);
grad_op
->
SetInput
(
"I"
,
Input
(
"I"
));
grad_op
->
SetInput
(
"X"
,
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
"Out"
,
InputGrad
(
"X"
));
grad_op
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDescBind
>
(
grad_op
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
write_to_array
,
ops
::
WriteToArrayOp
,
ops
::
WriteToArrayInferShape
,
ops
::
WriteToArrayOpProtoMaker
,
ops
::
WriteToArrayGradMaker
,
ops
::
WriteToArrayInferVarType
);
REGISTER_OPERATOR
(
read_from_array
,
ops
::
ReadFromArrayOp
,
ops
::
ReadFromArrayInferShape
,
ops
::
ReadFromArrayProtoMaker
,
ops
::
ReadFromArrayGradMaker
);
paddle/optimizer/CMakeLists.txt
浏览文件 @
7eb65b31
include_directories
(
${
CMAKE_CURRENT_BINARY_DIR
}
)
set
(
OPITMIZER_SRCS
adadelta_optimizer.cc
adagrad_optimizer.cc
...
...
@@ -9,11 +7,6 @@ set(OPITMIZER_SRCS
sgd_optimizer.cc
)
add_library
(
paddle_optimizer STATIC
${
OPITMIZER_SRCS
}
)
add_dependencies
(
paddle_optimizer paddle_proto
${
external_project_dependencies
}
)
if
(
WITH_TESTING
)
add_simple_unittest
(
serialization_test
)
add_simple_unittest
(
parameter_optimizer_test
)
endif
()
cc_library
(
paddle_optimizer STATIC SRCS
${
OPITMIZER_SRCS
}
DEPS paddle_proto glog
)
cc_test
(
serialization_test SRCS serialization_test.cc DEPS paddle_proto
)
cc_test
(
parameter_optimizer_test SRCS parameter_optimizer_test.cc DEPS paddle_optimizer
)
paddle/optimizer/adadelta_optimizer.cc
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "adadelta_optimizer.h"
#include <algorithm>
#include <cmath>
...
...
paddle/optimizer/adadelta_optimizer.h
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "parameter_optimizer.h"
...
...
paddle/optimizer/adagrad_optimizer.cc
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cmath>
#include "adagrad_optimizer.h"
...
...
paddle/optimizer/adagrad_optimizer.h
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "parameter_optimizer.h"
...
...
paddle/optimizer/adam_optimizer.cc
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "adam_optimizer.h"
#include <cmath>
...
...
paddle/optimizer/adam_optimizer.h
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "parameter_optimizer.h"
...
...
paddle/optimizer/optimizer.cc
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "optimizer.h"
#include <glog/logging.h>
#include <cstdlib>
...
...
@@ -6,8 +20,8 @@
#include "parameter_optimizer.h"
using
namespace
paddle
;
using
namespace
paddle
::
optimize
r
;
using
paddle
::
optimizer
::
ParameterOptimizer
;
using
paddle
::
optimizer
::
Tenso
r
;
template
<
paddle_element_type
VALUE
>
struct
EnumToType
{};
...
...
@@ -15,22 +29,21 @@ struct EnumToType {};
template
<
class
T
>
struct
TypeToEnum
{};
#define MATCH_ENUM_TYPE(TYPE, ENUM)
\
template <>
\
struct TypeToEnum<TYPE> {
\
static paddle_element_type v() { return ENUM; }
;
\
static constexpr TYPE value = ENUM;
\
};
\
template <>
\
struct EnumToType<ENUM> {
\
typedef TYPE Type;
\
#define MATCH_ENUM_TYPE(TYPE, ENUM) \
template <> \
struct TypeToEnum<TYPE> { \
static paddle_element_type v() { return ENUM; } \
static constexpr TYPE value = ENUM; \
}; \
template <> \
struct EnumToType<ENUM> { \
typedef TYPE Type; \
}
MATCH_ENUM_TYPE
(
int32_t
,
PADDLE_ELEMENT_TYPE_INT32
);
MATCH_ENUM_TYPE
(
uint32_t
,
PADDLE_ELEMENT_TYPE_UINT32
);
MATCH_ENUM_TYPE
(
int64_t
,
PADDLE_ELEMENT_TYPE_INT64
);
MATCH_ENUM_TYPE
(
uint64_t
,
PADDLE_ELEMENT_TYPE_UINT64
);
// TODO(zhihong): only implement below type, need to fix
MATCH_ENUM_TYPE
(
float
,
PADDLE_ELEMENT_TYPE_FLOAT32
);
MATCH_ENUM_TYPE
(
double
,
PADDLE_ELEMENT_TYPE_FLOAT64
);
...
...
paddle/optimizer/optimizer.h
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stdbool.h>
...
...
paddle/optimizer/parameter_optimizer.cc
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include "adadelta_optimizer.h"
#include "adagrad_optimizer.h"
...
...
paddle/optimizer/parameter_optimizer.h
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <glog/logging.h>
...
...
paddle/optimizer/parameter_optimizer_test.c
pp
→
paddle/optimizer/parameter_optimizer_test.c
c
浏览文件 @
7eb65b31
...
...
@@ -110,7 +110,7 @@ public:
int
s
=
0
;
float
*
newp
=
(
float
*
)
opts_
[
i
]
->
get_weight
(
&
s
);
EXPECT_EQ
(
s
,
kSize
);
EXPECT_EQ
(
s
tatic_cast
<
size_t
>
(
s
)
,
kSize
);
for
(
size_t
j
=
0
;
j
<
kSize
;
++
j
)
{
EXPECT_EQ
(
newp
[
j
],
(
*
p
)[
j
]);
}
...
...
paddle/optimizer/serialization_test.c
pp
→
paddle/optimizer/serialization_test.c
c
浏览文件 @
7eb65b31
文件已移动
paddle/optimizer/sgd_optimizer.cc
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "sgd_optimizer.h"
#include "serialization.h"
...
...
paddle/optimizer/sgd_optimizer.h
浏览文件 @
7eb65b31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "parameter_optimizer.h"
...
...
@@ -15,7 +29,6 @@ public:
nesterov_
(
n
)
{
if
(
momentum_
!=
0.0
)
{
size_t
size
=
parameter
->
size
();
// TODO: fix it with align aware allocator bind to Tensor
momentums_
=
new
Tensor
(
size
);
}
}
...
...
paddle/pybind/protobuf.cc
浏览文件 @
7eb65b31
...
...
@@ -97,6 +97,15 @@ namespace pybind {
using
namespace
paddle
::
framework
;
// NOLINT
template
<
typename
T
>
static
py
::
bytes
SerializeMessage
(
T
&
self
)
{
// Check IsInitialized in Python
std
::
string
retv
;
PADDLE_ENFORCE
(
self
.
Proto
()
->
SerializePartialToString
(
&
retv
),
"Cannot serialize message"
);
return
retv
;
}
// Bind Methods
void
BindProgramDesc
(
py
::
module
&
m
)
{
py
::
class_
<
ProgramDescBind
>
(
m
,
"ProgramDesc"
,
""
)
...
...
@@ -132,17 +141,7 @@ void BindProgramDesc(py::module &m) {
.
def
(
"block"
,
&
ProgramDescBind
::
MutableBlock
,
py
::
return_value_policy
::
reference
)
.
def
(
"num_blocks"
,
&
ProgramDescBind
::
Size
)
.
def
(
"serialize_to_string"
,
[](
ProgramDescBind
&
program_desc
)
->
py
::
bytes
{
const
ProgramDesc
*
desc
=
program_desc
.
Proto
();
PADDLE_ENFORCE
(
desc
->
IsInitialized
(),
"ProgramDesc has not been initialized."
);
std
::
string
res
;
PADDLE_ENFORCE
(
desc
->
SerializeToString
(
&
res
),
"Serialize ProgramDesc Error. This could be a bug of Paddle."
);
return
res
;
})
.
def
(
"serialize_to_string"
,
SerializeMessage
<
ProgramDescBind
>
)
.
def
(
"parse_from_string"
,
[](
ProgramDescBind
&
program_desc
,
const
std
::
string
&
data
)
{
ProgramDesc
*
desc
=
program_desc
.
Proto
();
...
...
@@ -181,16 +180,7 @@ void BindBlockDesc(py::module &m) {
py
::
return_value_policy
::
reference
)
.
def
(
"op_size"
,
&
BlockDescBind
::
OpSize
)
.
def
(
"op"
,
&
BlockDescBind
::
Op
,
py
::
return_value_policy
::
reference
)
.
def
(
"serialize_to_string"
,
[](
BlockDescBind
&
block_desc
)
->
py
::
bytes
{
const
BlockDesc
*
desc
=
block_desc
.
Proto
();
PADDLE_ENFORCE
(
desc
->
IsInitialized
(),
"BlockDesc has not been initialized."
);
std
::
string
res
;
PADDLE_ENFORCE
(
desc
->
SerializeToString
(
&
res
),
"Serialize BlockDesc Error. This could be a bug of Paddle."
);
return
res
;
});
.
def
(
"serialize_to_string"
,
SerializeMessage
<
BlockDescBind
>
);
}
void
BindVarDsec
(
py
::
module
&
m
)
{
...
...
@@ -219,17 +209,7 @@ void BindVarDsec(py::module &m) {
.
def
(
"set_lod_level"
,
&
VarDescBind
::
SetLoDLevel
)
.
def
(
"type"
,
&
VarDescBind
::
GetType
)
.
def
(
"set_type"
,
&
VarDescBind
::
SetType
)
.
def
(
"serialize_to_string"
,
[](
VarDescBind
&
var_desc
)
->
py
::
bytes
{
const
VarDesc
*
desc
=
var_desc
.
Proto
();
PADDLE_ENFORCE
(
desc
->
IsInitialized
(),
"VarDesc has not been initialized."
);
std
::
string
res
;
PADDLE_ENFORCE
(
desc
->
SerializeToString
(
&
res
),
"Serialize VarDesc Error. This could be a bug of Paddle."
);
return
res
;
})
.
def
(
"serialize_to_string"
,
SerializeMessage
<
VarDescBind
>
)
.
def
(
"persistable"
,
&
VarDescBind
::
Persistable
)
.
def
(
"set_persistable"
,
&
VarDescBind
::
SetPersistable
);
...
...
@@ -274,16 +254,7 @@ void BindOpDesc(py::module &m) {
.
def
(
"check_attrs"
,
&
OpDescBind
::
CheckAttrs
)
.
def
(
"infer_shape"
,
&
OpDescBind
::
InferShape
)
.
def
(
"infer_var_type"
,
&
OpDescBind
::
InferVarType
)
.
def
(
"serialize_to_string"
,
[](
OpDescBind
&
op_desc
)
->
py
::
bytes
{
const
OpDesc
*
desc
=
op_desc
.
Proto
();
PADDLE_ENFORCE
(
desc
->
IsInitialized
(),
"OpDesc has not been initialized."
);
std
::
string
res
;
PADDLE_ENFORCE
(
desc
->
SerializeToString
(
&
res
),
"Serialize OpDesc Error. This could be a bug of Paddle."
);
return
res
;
});
.
def
(
"serialize_to_string"
,
SerializeMessage
<
OpDescBind
>
);
}
}
// namespace pybind
...
...
paddle/scripts/docker/build.sh
浏览文件 @
7eb65b31
...
...
@@ -168,6 +168,7 @@ EOF
${
DOCKERFILE_GPU_ENV
}
ADD go/cmd/pserver/pserver /usr/bin/
ADD go/cmd/master/master /usr/bin/
ADD paddle/pybind/print_operators_doc /usr/bin/
# default command shows the paddle version and exit
CMD ["paddle", "version"]
EOF
...
...
python/paddle/v2/framework/executor.py
浏览文件 @
7eb65b31
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.framework
import
Block
,
Program
from
paddle.v2.framework.framework
import
Block
,
Program
,
g_main_program
g_scope
=
core
.
Scope
()
...
...
@@ -18,7 +18,7 @@ class Executor(object):
self
.
executor
=
core
.
Executor
(
act_places
)
def
run
(
self
,
program
,
program
=
None
,
feed
=
None
,
fetch_list
=
None
,
feed_var_name
=
'feed'
,
...
...
@@ -29,6 +29,9 @@ class Executor(object):
if
fetch_list
is
None
:
fetch_list
=
[]
if
program
is
None
:
program
=
g_main_program
if
not
isinstance
(
program
,
Program
):
raise
TypeError
()
...
...
python/paddle/v2/framework/framework.py
浏览文件 @
7eb65b31
...
...
@@ -12,6 +12,14 @@ def unique_name(prefix):
return
"_"
.
join
([
prefix
,
str
(
uid
)])
def
_debug_string_
(
proto
):
error_fields
=
list
()
if
not
proto
.
IsInitialized
(
error_fields
):
raise
ValueError
(
"{0} are not initialized
\n
The message is {1}"
.
format
(
error_fields
,
proto
))
return
proto
.
__str__
()
class
Variable
(
object
):
def
__init__
(
self
,
block
,
...
...
@@ -95,7 +103,7 @@ class Variable(object):
def
__str__
(
self
):
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
VarDesc
.
FromString
(
str
(
protostr
))
return
proto
.
__str__
(
)
return
_debug_string_
(
proto
)
__repr__
=
__str__
...
...
@@ -286,7 +294,7 @@ class Operator(object):
def
__str__
(
self
):
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
OpDesc
.
FromString
(
str
(
protostr
))
return
proto
.
__str__
(
)
return
_debug_string_
(
proto
)
__repr__
=
__str__
...
...
@@ -343,7 +351,7 @@ class Block(object):
def
__str__
(
self
):
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
BlockDesc
.
FromString
(
str
(
protostr
))
return
proto
.
__str__
(
)
return
_debug_string_
(
proto
)
__repr__
=
__str__
...
...
@@ -448,7 +456,7 @@ class Program(object):
def
__str__
(
self
):
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
ProgramDesc
.
FromString
(
str
(
protostr
))
return
proto
.
__str__
(
)
return
_debug_string_
(
proto
)
def
clone
(
self
):
p
=
Program
()
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
7eb65b31
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.framework
import
OpProtoHolder
,
Variable
,
Program
,
Operator
from
paddle.v2.framework.initializer
import
ConstantInitializer
,
NormalInitializer
from
paddle.v2.framework.framework
import
OpProtoHolder
,
Variable
,
Program
,
\
Operator
from
paddle.v2.framework.initializer
import
ConstantInitializer
,
\
NormalInitializer
from
paddle.v2.framework.layer_helper
import
LayerHelper
,
unique_name
import
re
...
...
@@ -579,25 +581,45 @@ class StaticRNN(object):
if
self
.
status
!=
StaticRNN
.
IN_RNN_BLOCK
:
raise
ValueError
(
"You must invoke {0} in rnn block"
.
format
(
method
))
def
memory
(
self
,
init
=
None
,
shape
=
None
,
dtype
=
None
,
init_value
=
0
):
def
memory
(
self
,
init
=
None
,
shape
=
None
,
batch_ref
=
None
,
init_value
=
0.0
,
init_batch_dim_idx
=
0
,
ref_batch_dim_idx
=
1
):
'''
:param init: boot memory, if not set, a shape, batch_ref must be provided
:param shape: shape of the boot memory
:param batch_ref: batch size reference variable
:param init_value: the init value of boot memory
:param init_batch_dim_idx: the index of batch size in init's dimension
:param ref_batch_dim_idx: the index of batch size in batch_ref's dimension
:return: boot memory
'''
self
.
_assert_in_rnn_block_
(
'memory'
)
if
init
is
None
:
if
shape
is
None
or
dtype
is
None
:
if
shape
is
None
or
batch_ref
is
None
:
raise
ValueError
(
"if init is None, memory at least need shape and
dtype
"
)
"if init is None, memory at least need shape and
batch_ref
"
)
parent_block
=
self
.
parent_block
()
var_name
=
unique_name
(
"@"
.
join
([
self
.
helper
.
name
,
"memory_boot"
]))
boot_var
=
parent_block
.
create_var
(
name
=
var_name
,
shape
=
shape
,
dtype
=
dtype
,
persistable
=
False
)
name
=
var_name
,
shape
=
shape
,
dtype
=
batch_ref
.
data_type
,
persistable
=
False
)
parent_block
.
append_op
(
type
=
"fill_constant"
,
inputs
=
{},
type
=
"fill_constant
_batch_size_like
"
,
inputs
=
{
'Input'
:
[
batch_ref
]
},
outputs
=
{
'Out'
:
[
boot_var
]},
attrs
=
{
'value'
:
init_value
,
'shape'
:
[
40
]
+
list
(
boot_var
.
shape
[
1
:]),
'data_type'
:
boot_var
.
data_type
'shape'
:
boot_var
.
shape
,
'data_type'
:
boot_var
.
data_type
,
'input_dim_idx'
:
ref_batch_dim_idx
,
'output_dim_idx'
:
init_batch_dim_idx
})
return
self
.
memory
(
init
=
boot_var
)
...
...
@@ -751,3 +773,68 @@ def lod_rank_table(x, level=0, main_program=None):
outputs
=
{
'Out'
:
table
},
attrs
=
{
'level'
:
level
})
return
table
def
fill_constant
(
shape
,
dtype
,
value
,
main_program
=
None
):
helper
=
LayerHelper
(
"ones"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'fill_constant'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'shape'
:
shape
,
'data_type'
:
out
.
data_type
,
'value'
:
float
(
value
)
})
out
.
stop_gradient
=
True
return
out
def
ones
(
shape
,
dtype
,
main_program
=
None
):
return
fill_constant
(
value
=
1.0
,
**
locals
())
def
zeros
(
shape
,
dtype
,
main_program
=
None
):
return
fill_constant
(
value
=
0.0
,
**
locals
())
def
increment
(
x
,
value
=
1.0
,
main_program
=
None
):
helper
=
LayerHelper
(
"increment"
,
**
locals
())
tmp
=
helper
.
create_tmp_variable
(
dtype
=
x
.
data_type
)
helper
.
append_op
(
type
=
'increment'
,
inputs
=
{
'X'
:
[
x
]},
outputs
=
{
'Out'
:
[
tmp
]},
attrs
=
{
'step'
:
value
})
return
tmp
def
array_write
(
x
,
i
,
array
=
None
,
main_program
=
None
):
helper
=
LayerHelper
(
'array_write'
,
**
locals
())
if
array
is
None
:
array
=
helper
.
create_variable
(
name
=
"{0}.out"
.
format
(
helper
.
name
),
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
,
dtype
=
x
.
data_type
)
helper
.
append_op
(
type
=
'write_to_array'
,
inputs
=
{
'X'
:
[
x
],
'I'
:
[
i
]},
outputs
=
{
'Out'
:
[
array
]})
return
array
def
array_read
(
array
,
i
,
main_program
=
None
):
helper
=
LayerHelper
(
'array_read'
,
**
locals
())
if
not
isinstance
(
array
,
Variable
)
or
array
.
type
!=
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
:
raise
TypeError
(
"array should be tensor array vairable"
)
out
=
helper
.
create_tmp_variable
(
dtype
=
array
.
data_type
)
helper
.
append_op
(
type
=
'read_from_array'
,
inputs
=
{
'X'
:
[
array
],
'I'
:
[
i
]},
outputs
=
{
'Out'
:
[
out
]})
return
out
python/paddle/v2/framework/tests/test_array_read_write_op.py
0 → 100644
浏览文件 @
7eb65b31
import
unittest
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.layers
as
layers
from
paddle.v2.framework.executor
import
Executor
from
paddle.v2.framework.backward
import
append_backward_ops
from
paddle.v2.framework.framework
import
g_main_program
import
numpy
class
TestArrayReadWrite
(
unittest
.
TestCase
):
def
test_read_write
(
self
):
x
=
[
layers
.
data
(
name
=
'x0'
,
shape
=
[
100
]),
layers
.
data
(
name
=
'x1'
,
shape
=
[
100
]),
layers
.
data
(
name
=
'x2'
,
shape
=
[
100
])
]
for
each_x
in
x
:
each_x
.
stop_gradient
=
False
i
=
layers
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
)
arr
=
layers
.
array_write
(
x
=
x
[
0
],
i
=
i
)
i
=
layers
.
increment
(
x
=
i
)
i
.
stop_gradient
=
True
arr
=
layers
.
array_write
(
x
=
x
[
1
],
i
=
i
,
array
=
arr
)
i
=
layers
.
increment
(
x
=
i
)
i
.
stop_gradient
=
True
arr
=
layers
.
array_write
(
x
=
x
[
2
],
i
=
i
,
array
=
arr
)
i
=
layers
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
)
a0
=
layers
.
array_read
(
array
=
arr
,
i
=
i
)
i
=
layers
.
increment
(
x
=
i
)
i
.
stop_gradient
=
True
# index should not calculate gradient
a1
=
layers
.
array_read
(
array
=
arr
,
i
=
i
)
i
=
layers
.
increment
(
x
=
i
)
i
.
stop_gradient
=
True
a2
=
layers
.
array_read
(
array
=
arr
,
i
=
i
)
mean_a0
=
layers
.
mean
(
x
=
a0
)
mean_a1
=
layers
.
mean
(
x
=
a1
)
mean_a2
=
layers
.
mean
(
x
=
a2
)
a_sum
=
layers
.
sums
(
input
=
[
mean_a0
,
mean_a1
,
mean_a2
])
mean_x0
=
layers
.
mean
(
x
=
x
[
0
])
mean_x1
=
layers
.
mean
(
x
=
x
[
1
])
mean_x2
=
layers
.
mean
(
x
=
x
[
2
])
x_sum
=
layers
.
sums
(
input
=
[
mean_x0
,
mean_x1
,
mean_x2
])
scope
=
core
.
Scope
()
cpu
=
core
.
CPUPlace
()
exe
=
Executor
(
cpu
)
tensor
=
core
.
LoDTensor
()
tensor
.
set
(
numpy
.
random
.
random
(
size
=
(
100
,
100
)).
astype
(
'float32'
),
cpu
)
outs
=
map
(
numpy
.
array
,
exe
.
run
(
feed
=
{
'x0'
:
tensor
,
'x1'
:
tensor
,
'x2'
:
tensor
},
fetch_list
=
[
a_sum
,
x_sum
],
scope
=
scope
))
self
.
assertEqual
(
outs
[
0
],
outs
[
1
])
total_sum
=
layers
.
sums
(
input
=
[
a_sum
,
x_sum
])
total_sum_scaled
=
layers
.
scale
(
x
=
total_sum
,
scale
=
1
/
6.0
)
append_backward_ops
(
total_sum_scaled
)
g_vars
=
map
(
g_main_program
.
global_block
().
var
,
[
each_x
.
name
+
"@GRAD"
for
each_x
in
x
])
g_out
=
[
item
.
sum
()
for
item
in
map
(
numpy
.
array
,
exe
.
run
(
feed
=
{
'x0'
:
tensor
,
'x1'
:
tensor
,
'x2'
:
tensor
},
fetch_list
=
g_vars
))
]
g_out_sum
=
numpy
.
array
(
g_out
).
sum
()
# since our final gradient is 1 and the neural network are all linear
# with mean_op.
# the input gradient should also be 1
self
.
assertAlmostEqual
(
1.0
,
g_out_sum
,
delta
=
0.1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_fill_constant_batch_size_like_op.py
浏览文件 @
7eb65b31
...
...
@@ -21,9 +21,14 @@ class TestFillConstantBatchSizeLikeWhenSecondDimIsBatchSize(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"fill_constant_batch_size_like"
self
.
inputs
=
{
'Input'
:
np
.
random
.
random
((
219
,
232
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'value'
:
3.5
,
'shape'
:
[
132
,
-
1
,
7
],
'dim_idx'
:
1
}
out
=
np
.
random
.
random
((
132
,
232
,
7
)).
astype
(
"float32"
)
self
.
attrs
=
{
'value'
:
3.5
,
'shape'
:
[
132
,
-
1
,
7
],
'input_dim_idx'
:
0
,
'output_dim_idx'
:
1
}
out
=
np
.
random
.
random
((
132
,
219
,
7
)).
astype
(
"float32"
)
out
.
fill
(
3.5
)
self
.
outputs
=
{
'Out'
:
out
}
...
...
python/paddle/v2/framework/tests/test_framework_debug_str.py
0 → 100644
浏览文件 @
7eb65b31
import
unittest
from
paddle.v2.framework.framework
import
Program
class
TestDebugStringFramework
(
unittest
.
TestCase
):
def
test_debug_str
(
self
):
p
=
Program
()
p
.
current_block
().
create_var
(
name
=
't'
,
shape
=
[
0
,
1
])
self
.
assertRaises
(
ValueError
,
callableObj
=
p
.
__str__
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
7eb65b31
import
unittest
import
logging
from
op_test
import
get_numeric_gradient
from
paddle.v2.framework.layers
import
*
import
paddle.v2.framework.layers
as
layers
from
paddle.v2.framework.framework
import
Program
from
paddle.v2.framework.executor
import
Executor
from
paddle.v2.framework.backward
import
append_backward_ops
...
...
@@ -16,8 +13,8 @@ class PyRNNBase(object):
self
.
x
=
np
.
ones
(
shape
=
input_shape
).
astype
(
"float32"
)
self
.
y
=
np
.
zeros
(
shape
=
output_shape
).
astype
(
"float32"
)
def
step
(
self
):
pass
def
step
(
self
,
step_id
,
x
):
raise
NotImplementedError
def
forward
(
self
):
for
step_id
in
range
(
self
.
x
.
shape
[
0
]):
...
...
@@ -116,30 +113,30 @@ class RecurrentOpTest1(unittest.TestCase):
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
py_rnn
=
PySimpleRNN1
(
self
.
input_shape
,
self
.
output_shape
)
self
.
output
=
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
self
.
output
=
layers
.
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
def
create_rnn_op
(
self
):
x
=
data
(
x
=
layers
.
data
(
shape
=
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
h_boot
=
data
(
h_boot
=
layers
.
data
(
shape
=
[
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot'
,
**
self
.
p_info
)
h_boot
.
stop_gradient
=
False
rnn
=
StaticRNN
(
main_program
=
self
.
main_program
)
rnn
=
layers
.
StaticRNN
(
main_program
=
self
.
main_program
)
with
rnn
.
step
():
h_pre
=
rnn
.
memory
(
init
=
h_boot
)
x_t
=
rnn
.
step_input
(
x
)
h
=
scale
(
x
=
elementwise_add
(
h
=
layers
.
scale
(
x
=
layers
.
elementwise_add
(
x
=
h_pre
,
y
=
x_t
,
**
self
.
p_info
),
scale
=
self
.
py_rnn
.
scale
,
**
self
.
p_info
)
...
...
@@ -249,41 +246,41 @@ class RecurrentOpTest2(RecurrentOpTest1):
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
py_rnn
=
PySimpleRNN2
(
self
.
input_shape
,
self
.
output_shape
)
self
.
output
=
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
self
.
output
=
layers
.
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
def
create_rnn_op
(
self
):
x
=
data
(
x
=
layers
.
data
(
shape
=
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
h_boot
=
data
(
h_boot
=
layers
.
data
(
shape
=
[
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot'
,
**
self
.
p_info
)
h_boot
.
stop_gradient
=
False
rnn
=
StaticRNN
(
main_program
=
self
.
main_program
)
rnn
=
layers
.
StaticRNN
(
main_program
=
self
.
main_program
)
with
rnn
.
step
():
h_pre
=
rnn
.
memory
(
init
=
h_boot
)
x_t
=
rnn
.
step_input
(
x
)
temp_l
=
fc
(
input
=
x_t
,
size
=
self
.
input_dim
,
param_attr
=
{
'name'
:
'W'
},
bias_attr
=
False
,
**
self
.
p_info
)
temp_r
=
fc
(
input
=
h_pre
,
size
=
self
.
input_dim
,
param_attr
=
{
'name'
:
'U'
},
bias_attr
=
False
,
**
self
.
p_info
)
h
=
sigmoid
(
x
=
elementwise_add
(
temp_l
=
layers
.
fc
(
input
=
x_t
,
size
=
self
.
input_dim
,
param_attr
=
{
'name'
:
'W'
},
bias_attr
=
False
,
**
self
.
p_info
)
temp_r
=
layers
.
fc
(
input
=
h_pre
,
size
=
self
.
input_dim
,
param_attr
=
{
'name'
:
'U'
},
bias_attr
=
False
,
**
self
.
p_info
)
h
=
layers
.
sigmoid
(
x
=
layers
.
elementwise_add
(
x
=
temp_l
,
y
=
temp_r
,
**
self
.
p_info
),
**
self
.
p_info
)
...
...
@@ -293,7 +290,7 @@ class RecurrentOpTest2(RecurrentOpTest1):
return
rnn
()
class
RecurrentOp
Test3
(
RecurrentOpTest1
):
class
RecurrentOp
MultipleMemoryTest
(
RecurrentOpTest1
):
'''
Test RNNOp with two memories
equation:
...
...
@@ -310,8 +307,8 @@ class RecurrentOpTest3(RecurrentOpTest1):
class
PySimpleRNN3
(
PyRNNBase
):
def
__init__
(
self
,
input_shape
,
output_shape
):
super
(
RecurrentOp
Test3
.
PySimpleRNN3
,
self
).
__init__
(
input_shape
,
output_shape
)
super
(
RecurrentOp
MultipleMemoryTest
.
PySimpleRNN3
,
self
).
__init__
(
input_shape
,
output_shape
)
seq_len
,
batch_size
,
input_dim
=
input_shape
self
.
h_boot1
=
np
.
random
.
normal
(
size
=
(
batch_size
,
...
...
@@ -345,27 +342,27 @@ class RecurrentOpTest3(RecurrentOpTest1):
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
py_rnn
=
RecurrentOp
Test3
.
PySimpleRNN3
(
self
.
input_shape
,
self
.
output_shape
)
self
.
py_rnn
=
RecurrentOp
MultipleMemoryTest
.
PySimpleRNN3
(
self
.
input_shape
,
self
.
output_shape
)
self
.
output
=
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
self
.
output
=
layers
.
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
def
create_rnn_op
(
self
):
x
=
data
(
x
=
layers
.
data
(
shape
=
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
h_boot1
=
data
(
h_boot1
=
layers
.
data
(
shape
=
[
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot1'
,
append_batch_size
=
False
,
**
self
.
p_info
)
h_boot1
.
stop_gradient
=
False
h_boot2
=
data
(
h_boot2
=
layers
.
data
(
shape
=
[
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot2'
,
...
...
@@ -373,15 +370,15 @@ class RecurrentOpTest3(RecurrentOpTest1):
**
self
.
p_info
)
h_boot2
.
stop_gradient
=
False
rnn
=
StaticRNN
(
main_program
=
self
.
main_program
)
rnn
=
layers
.
StaticRNN
(
main_program
=
self
.
main_program
)
with
rnn
.
step
():
h_pre1
=
rnn
.
memory
(
init
=
h_boot1
)
h_pre2
=
rnn
.
memory
(
init
=
h_boot2
)
x_t
=
rnn
.
step_input
(
x
)
mem1
=
scale
(
x
=
h_pre1
,
scale
=
1.0
,
**
self
.
p_info
)
mem2
=
scale
(
x
=
h_pre2
,
scale
=
1.0
,
**
self
.
p_info
)
out
=
sums
(
input
=
[
mem1
,
x_t
,
mem2
],
**
self
.
p_info
)
mem1
=
layers
.
scale
(
x
=
h_pre1
,
scale
=
1.0
,
**
self
.
p_info
)
mem2
=
layers
.
scale
(
x
=
h_pre2
,
scale
=
1.0
,
**
self
.
p_info
)
out
=
layers
.
sums
(
input
=
[
mem1
,
x_t
,
mem2
],
**
self
.
p_info
)
rnn
.
update_memory
(
h_pre1
,
mem1
)
rnn
.
update_memory
(
h_pre2
,
mem2
)
...
...
@@ -390,5 +387,70 @@ class RecurrentOpTest3(RecurrentOpTest1):
return
rnn
()
class
RecurrentOpNoMemBootTest
(
RecurrentOpTest1
):
'''
Test RNNOp with two memories
equation:
mem = x + mem_pre
y = mem
vars:
- x
memories:
- mem
outputs:
- y
'''
class
PySimpleRNN4
(
PyRNNBase
):
def
__init__
(
self
,
input_shape
,
output_shape
):
super
(
RecurrentOpNoMemBootTest
.
PySimpleRNN4
,
self
).
__init__
(
input_shape
,
output_shape
)
men_dim
=
input_shape
self
.
mems
=
np
.
zeros
(
shape
=
men_dim
).
astype
(
"float32"
)
def
step
(
self
,
step_id
,
x
):
if
step_id
==
0
:
pre_mem
=
np
.
zeros_like
(
x
)
else
:
pre_mem
=
self
.
mems
[
step_id
-
1
]
self
.
mems
[
step_id
]
=
pre_mem
+
x
self
.
y
[
step_id
]
=
self
.
mems
[
step_id
]
input_dim
=
1
batch_size
=
1
sent_len
=
2
def
setUp
(
self
):
self
.
setup_program
()
self
.
data_field
=
{
"x"
}
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
py_rnn
=
RecurrentOpNoMemBootTest
.
PySimpleRNN4
(
self
.
input_shape
,
self
.
output_shape
)
self
.
output
=
layers
.
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
print
self
.
main_program
def
create_rnn_op
(
self
):
x
=
layers
.
data
(
shape
=
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
rnn
=
layers
.
StaticRNN
(
main_program
=
self
.
main_program
)
with
rnn
.
step
():
mem_pre
=
rnn
.
memory
(
shape
=
[
-
1
,
self
.
input_dim
],
batch_ref
=
x
)
x_t
=
rnn
.
step_input
(
x
)
mem
=
layers
.
elementwise_add
(
x
=
mem_pre
,
y
=
x_t
,
**
self
.
p_info
)
rnn
.
update_memory
(
mem_pre
,
mem
)
rnn
.
output
(
mem
)
return
rnn
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录