Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
7e99af55
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7e99af55
编写于
5月 25, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments
上级
7430d305
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
23 addition
and
19 deletion
+23
-19
paddle/py_paddle/dataprovider_converter.py
paddle/py_paddle/dataprovider_converter.py
+23
-19
未找到文件。
paddle/py_paddle/dataprovider_converter.py
浏览文件 @
7e99af55
...
...
@@ -60,7 +60,7 @@ class IScanner(object):
"""
pass
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
def
finish_pre_scan
(
self
,
argument
):
"""
Finish first scan pass. Allocate the memory.
...
...
@@ -103,23 +103,29 @@ class DenseScanner(IScanner):
def
pre_scan
(
self
,
dat
):
self
.
__height__
+=
1
if
self
.
__shape__
is
None
:
self
.
__shape__
=
numpy
.
array
(
dat
).
shape
if
len
(
self
.
__shape__
)
>
3
:
raise
ValueError
(
"The dimension of input cannot be greater than 3."
)
else
:
if
self
.
__shape__
!=
numpy
.
array
(
dat
).
shape
:
raise
ValueError
(
"The data shape must be same in one mini-batch."
)
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
self
.
__shape__
=
numpy
.
array
(
dat
).
shape
if
len
(
self
.
__shape__
)
>
3
:
raise
ValueError
(
"The dimension of input is greater than 3."
)
def
finish_pre_scan
(
self
,
argument
):
dim
=
reduce
(
lambda
x
,
y
:
x
*
y
,
self
.
__shape__
)
if
len
(
self
.
__shape__
)
==
1
:
assert
dim
==
self
.
input_type
.
dim
if
len
(
self
.
__shape__
)
==
1
and
dim
!=
self
.
input_type
.
dim
:
raise
ValueError
(
"The data size must be equal to it in data layer."
)
self
.
__mat__
=
numpy
.
ndarray
(
shape
=
(
self
.
__height__
,
dim
),
dtype
=
numpy
.
float32
)
self
.
__height__
=
0
def
scan
(
self
,
dat
):
if
isinstance
(
dat
,
numpy
.
ndarray
):
assert
self
.
__shape__
==
dat
.
shape
dat
=
dat
.
flatten
()
self
.
__mat__
[
self
.
__height__
]
=
d
at
# It's better to use NumPy array for speed.
d
=
numpy
.
array
(
dat
)
d
=
d
.
flatten
()
self
.
__mat__
[
self
.
__height__
]
=
d
self
.
__height__
+=
1
def
finish_scan
(
self
,
argument
):
...
...
@@ -136,6 +142,7 @@ class DenseScanner(IScanner):
h
,
w
=
self
.
__shape__
[
-
2
:]
argument
.
setSlotFrameHeight
(
self
.
pos
,
h
)
argument
.
setSlotFrameWidth
(
self
.
pos
,
w
)
self
.
__shape__
=
None
class
SparseBinaryScanner
(
IScanner
):
...
...
@@ -186,7 +193,7 @@ class IndexScanner(IScanner):
def
pre_scan
(
self
,
dat
):
self
.
__idx__
+=
1
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
def
finish_pre_scan
(
self
,
argument
):
self
.
__ids__
=
[
0
]
*
self
.
__idx__
self
.
__idx__
=
0
...
...
@@ -211,8 +218,8 @@ class SequenceScanner(IScanner):
for
each
in
dat
:
self
.
__inner_scanner__
.
pre_scan
(
each
)
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
self
.
__inner_scanner__
.
finish_pre_scan
(
argument
,
dat
)
def
finish_pre_scan
(
self
,
argument
):
self
.
__inner_scanner__
.
finish_pre_scan
(
argument
)
def
scan
(
self
,
dat
):
self
.
__seq__
.
append
(
self
.
__seq__
[
-
1
]
+
self
.
get_size
(
dat
))
...
...
@@ -253,11 +260,8 @@ class DataProviderConverter(object):
for
each_step
,
scanner
in
itertools
.
izip
(
each_sample
,
scanners
):
scanner
.
pre_scan
(
each_step
)
# Some scanners, like dense scanner, pre-allocate memory for mini-batch
# in finish_pre_scan function. The dat[0] is used to calculate the size
# of input data.
for
scanner
,
each_feature
in
itertools
.
izip
(
scanners
,
dat
[
0
]):
scanner
.
finish_pre_scan
(
argument
,
each_feature
)
for
scanner
in
scanners
:
scanner
.
finish_pre_scan
(
argument
)
for
each_sample
in
dat
:
for
each_step
,
scanner
in
itertools
.
izip
(
each_sample
,
scanners
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录