未验证 提交 7e526a6c 编写于 作者: W whs 提交者: GitHub

Merge pull request #9213 from wanghaoshuang/adadelta

Add python wrapper for Adadelta optimizer
......@@ -47,3 +47,10 @@ DecayedAdagrad
:members:
:noindex:
Adadelta
--------------
.. autoclass:: paddle.fluid.optimizer.AdadeltaOptimizer
:members:
:noindex:
......@@ -24,7 +24,9 @@ from layer_helper import LayerHelper
from regularizer import append_regularization_ops
from clip import append_gradient_clip_ops, error_clip_callback
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
__all__ = [
'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Adadelta'
]
class Optimizer(object):
......@@ -580,6 +582,88 @@ class DecayedAdagradOptimizer(Optimizer):
return decayed_adagrad_op
class AdadeltaOptimizer(Optimizer):
"""
**Adadelta Optimizer**
Simple Adadelta optimizer with average squared grad state and
average squared update state.
The details of adadelta please refer to this
`ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
<http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.
.. math::
E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
E(g_t^2) + \\epsilon ) ) \\\\
E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2
Args:
learning_rate(float): global leraning rate
rho(float): rho in equation
epsilon(float): epsilon in equation
Examples:
.. code-block:: python
optimizer = fluid.optimizer.Adadelta(
learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
_, params_grads = optimizer.minimize(cost)
"""
_avg_squared_grad_acc_str = "_avg_squared_grad"
_avg_squared_update_acc_str = "_avg_squared_update"
def __init__(self, learning_rate, epsilon=1.0e-6, rho=0.95, **kwargs):
if learning_rate is None:
raise ValueError("learning_rate is not set.")
if epsilon is None:
raise ValueError("epsilon is not set.")
if rho is None:
raise ValueError("rho is not set.")
super(AdadeltaOptimizer, self).__init__(
learning_rate=learning_rate, **kwargs)
self.type = "adadelta"
self._epsilon = epsilon
self._rho = rho
def _create_accumulators(self, block, parameters):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
for p in parameters:
self._add_accumulator(self._avg_squared_grad_acc_str, p)
self._add_accumulator(self._avg_squared_update_acc_str, p)
def _append_optimize_op(self, block, param_and_grad):
if not isinstance(block, framework.Block):
raise TypeError("block is not instance of framework.Block.")
avg_squared_grad_acc = self._get_accumulator(
self._avg_squared_grad_acc_str, param_and_grad[0])
avg_squared_update_acc = self._get_accumulator(
self._avg_squared_update_acc_str, param_and_grad[0])
# Create the adadelta optimizer op
adadelta_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"AvgSquaredGrad": avg_squared_grad_acc,
"AvgSquaredUpdate": avg_squared_update_acc
},
outputs={
"ParamOut": param_and_grad[0],
"AvgSquaredGradOut": avg_squared_grad_acc,
"AvgSquaredUpdateOut": avg_squared_update_acc
},
attrs={"epsilon": self._epsilon,
"rho": self._rho})
return adadelta_op
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
......@@ -594,3 +678,4 @@ Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
Adadelta = AdadeltaOptimizer
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册